Department of Biological Sciences, University of Notre Dame, Notre Dame, South Bend, IN, United States of America.
Department of Statistics, University of Warwick, Coventry, United Kingdom.
PLoS Negl Trop Dis. 2018 Oct 8;12(10):e0006674. doi: 10.1371/journal.pntd.0006674. eCollection 2018 Oct.
Mathematical models are increasingly being used to evaluate strategies aiming to achieve the control or elimination of parasitic diseases. Recently, owing to growing realization that process-oriented models are useful for ecological forecasts only if the biological processes are well defined, attention has focused on data assimilation as a means to improve the predictive performance of these models.
We report on the development of an analytical framework to quantify the relative values of various longitudinal infection surveillance data collected in field sites undergoing mass drug administrations (MDAs) for calibrating three lymphatic filariasis (LF) models (EPIFIL, LYMFASIM, and TRANSFIL), and for improving their predictions of the required durations of drug interventions to achieve parasite elimination in endemic populations. The relative information contribution of site-specific data collected at the time points proposed by the WHO monitoring framework was evaluated using model-data updating procedures, and via calculations of the Shannon information index and weighted variances from the probability distributions of the estimated timelines to parasite extinction made by each model. Results show that data-informed models provided more precise forecasts of elimination timelines in each site compared to model-only simulations. Data streams that included year 5 post-MDA microfilariae (mf) survey data, however, reduced each model's uncertainty most compared to data streams containing only baseline and/or post-MDA 3 or longer-term mf survey data irrespective of MDA coverage, suggesting that data up to this monitoring point may be optimal for informing the present LF models. We show that the improvements observed in the predictive performance of the best data-informed models may be a function of temporal changes in inter-parameter interactions. Such best data-informed models may also produce more accurate predictions of the durations of drug interventions required to achieve parasite elimination.
Knowledge of relative information contributions of model only versus data-informed models is valuable for improving the usefulness of LF model predictions in management decision making, learning system dynamics, and for supporting the design of parasite monitoring programmes. The present results further pinpoint the crucial need for longitudinal infection surveillance data for enhancing the precision and accuracy of model predictions of the intervention durations required to achieve parasite elimination in an endemic location.
数学模型越来越多地被用于评估旨在控制或消除寄生虫病的策略。最近,由于人们越来越认识到,只有当生物过程得到很好的定义时,面向过程的模型才有助于生态预测,因此,人们将注意力集中在数据同化上,作为提高这些模型预测性能的一种手段。
我们报告了一个分析框架的开发,该框架用于量化在进行大规模药物治疗(MDA)的现场收集的各种纵向感染监测数据的相对价值,以校准三种淋巴丝虫病(LF)模型(EPIFIL、LYMFASIM 和 TRANSFIL),并改善它们对在流行地区实现寄生虫消除所需药物干预持续时间的预测。使用模型-数据更新程序和通过计算每个模型估计的寄生虫灭绝时间的概率分布的香农信息指数和加权方差,评估了世卫组织监测框架建议的时间点收集的特定地点数据的相对信息贡献。结果表明,与仅基于模型的模拟相比,数据驱动的模型提供了每个地点更精确的消除时间表预测。与仅包含基线和/或 MDA 后 3 年或更长时间的 mf 调查数据的数据流相比,包含 MDA 后 5 年 mf 调查数据的数据流降低了每个模型的不确定性,这表明在此监测点之前的数据可能是告知当前 LF 模型的最佳选择。我们表明,最佳数据驱动模型的预测性能的改进可能是参数间相互作用随时间变化的函数。这些最佳数据驱动模型也可以更准确地预测实现寄生虫消除所需的药物干预持续时间。
了解模型和数据驱动模型的相对信息贡献,对于改进 LF 模型预测在管理决策中的有用性、了解系统动态以及支持寄生虫监测方案的设计是有价值的。目前的结果进一步强调了在流行地区,需要进行纵向感染监测数据,以提高模型预测实现寄生虫消除所需干预持续时间的精度和准确性。