Amadio Mattia, Mysiak Jaroslav, Marzi Sepehr
CMCC Foundation - Euro-Mediterranean Center on Climate Change and Ca' Foscari University of Venice, Venice, Italy.
Risk Anal. 2019 Apr;39(4):829-845. doi: 10.1111/risa.13212. Epub 2018 Oct 8.
Detailed spatial representation of socioeconomic exposure and the related vulnerability to natural hazards has the potential to improve the quality and reliability of risk assessment outputs. We apply a spatially weighted dasymetric approach based on multiple ancillary data to downscale important socioeconomic variables and produce a grid data set for Italy that contains multilayered information about physical exposure, population, gross domestic product, and social vulnerability. We test the performances of our dasymetric approach compared to other spatial interpolation methods. Next, we combine the grid data set with flood hazard estimates to exemplify an application for the purpose of risk assessment.
社会经济暴露及其相关的自然灾害脆弱性的详细空间表示,有可能提高风险评估结果的质量和可靠性。我们应用基于多个辅助数据的空间加权密度估计法来细化重要的社会经济变量,并为意大利生成一个网格数据集,其中包含有关物理暴露、人口、国内生产总值和社会脆弱性的多层信息。我们将我们的密度估计法与其他空间插值方法进行比较,测试其性能。接下来,我们将网格数据集与洪水灾害估计相结合,以举例说明其在风险评估中的应用。