Risk and Environmental Studies, Karlstad University, Karlstad, Sweden.
Centre of Natural Hazards and Disaster Science (CNDS), Uppsala, Sweden.
Sci Rep. 2024 Sep 2;14(1):20410. doi: 10.1038/s41598-024-71330-5.
Accurate population data is crucial for assessing exposure in disaster risk assessments. In recent years, there has been a significant increase in the development of spatially gridded population datasets. Despite these datasets often using similar input data to derive population figures, notable differences arise when comparing them with direct ground-level observations. This study evaluates the precision and accuracy of flood exposure assessments using both known and generated gridded population datasets in Sweden. Specifically focusing on WorldPop and GHSPop, we compare these datasets against official national statistics at a 100 m grid cell resolution to assess their reliability in flood exposure analyses. Our objectives include quantifying the reliability of these datasets and examining the impact of data aggregation on estimated flood exposure across different administrative levels. The analysis reveals significant discrepancies in flood exposure estimates, underscoring the challenges associated with relying on generated gridded population data for precise flood risk assessments. Our findings emphasize the importance of careful dataset selection and highlight the potential for overestimation in flood risk analysis. This emphasises the critical need for validations against ground population data to ensure accurate flood risk management strategies.
准确的人口数据对于评估灾害风险评估中的暴露情况至关重要。近年来,空间网格化人口数据集的发展显著增加。尽管这些数据集通常使用类似的输入数据来推导出人口数据,但在与直接地面观测结果进行比较时,会出现显著差异。本研究评估了使用瑞典已知和生成的网格化人口数据集进行洪水暴露评估的精度和准确性。特别关注 WorldPop 和 GHSPop,我们将这些数据集与官方国家统计数据在 100 m 网格单元分辨率上进行比较,以评估它们在洪水暴露分析中的可靠性。我们的目标包括量化这些数据集的可靠性,并研究数据聚合对不同行政级别估计的洪水暴露的影响。分析结果显示,洪水暴露估计存在显著差异,突出了在精确洪水风险评估中依赖生成的网格化人口数据所面临的挑战。我们的研究结果强调了仔细选择数据集的重要性,并强调了在洪水风险分析中存在高估的可能性。这强调了需要对地面人口数据进行验证,以确保准确的洪水风险管理策略。