Leem Jinwoo, Deane Charlotte M
Department of Statistics, University of Oxford, Oxford, UK.
Methods Mol Biol. 2019;1851:367-380. doi: 10.1007/978-1-4939-8736-8_21.
Antibodies are proteins of the adaptive immune system; they can be designed to bind almost any molecule, and are increasingly being used as biotherapeutics. Experimental antibody design is an expensive and time-consuming process, and computational antibody design methods can now be used to help develop new therapeutics and diagnostics. Within the design pipeline, accurate antibody structure modeling is essential, as it provides the basis for antibody-antigen docking, binding affinity prediction, and estimating thermal stability. Ideally, models should be rapidly generated, allowing the exploration of the breadth of antibody space. This allows methods to replicate the natural processes of antibody diversification (e.g., V(D)J recombination and somatic hypermutation), and cope with large volumes of data that are typical of next-generation sequencing datasets. Here we describe ABodyBuilder and PEARS, algorithms that build and mutate antibody model structures. These methods take ~30 s to generate a model antibody structure.
抗体是适应性免疫系统的蛋白质;它们可以被设计成结合几乎任何分子,并且越来越多地被用作生物治疗剂。实验性抗体设计是一个昂贵且耗时的过程,而计算抗体设计方法现在可用于帮助开发新的治疗方法和诊断方法。在设计流程中,准确的抗体结构建模至关重要,因为它为抗体-抗原对接、结合亲和力预测和热稳定性估计提供了基础。理想情况下,模型应快速生成,以便探索抗体空间的广度。这使得方法能够复制抗体多样化的自然过程(例如,V(D)J重组和体细胞超突变),并处理下一代测序数据集典型的大量数据。在这里,我们描述了ABodyBuilder和PEARS,这两种构建和突变抗体模型结构的算法。这些方法大约需要30秒来生成一个模型抗体结构。