Suppr超能文献

ABodyBuilder:基于数据驱动的准确性估计进行自动化抗体结构预测。

ABodyBuilder: Automated antibody structure prediction with data-driven accuracy estimation.

作者信息

Leem Jinwoo, Dunbar James, Georges Guy, Shi Jiye, Deane Charlotte M

机构信息

a Department of Statistics , University of Oxford , Oxford , UK.

b Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg , Germany.

出版信息

MAbs. 2016 Oct;8(7):1259-1268. doi: 10.1080/19420862.2016.1205773. Epub 2016 Jul 8.

Abstract

Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder then annotates the 'confidence' of the model as a probability that a component of the antibody (e.g., CDRL3 loop) will be modeled within a root-mean square deviation threshold. It also flags structural motifs on the model that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets, including the 11 antibodies from the Antibody Modeling Assessment-II competition. ABodyBuilder builds models that are of similar quality to other methodologies, with sub-Angstrom predictions for the 'canonical' CDR loops. Its ability to model nanobodies, and rapidly generate models (∼30 seconds per model) widens its potential usage. ABodyBuilder can also help users in decision-making for the development of novel antibodies because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at http://opig.stats.ox.ac.uk/webapps/abodybuilder .

摘要

抗体结构的计算建模在治疗性抗体设计中起着关键作用。目前存在多种抗体建模流程,但尚无免费可用的方法能够对纳米抗体进行建模、提供预期模型准确性的估计,或突出抗体实验开发中的潜在问题。在此,我们描述了我们的自动化抗体建模流程ABodyBuilder,旨在克服这些问题。该算法本身遵循模板选择、方向预测、互补决定区(CDR)环建模和侧链预测这4个标准步骤。然后,ABodyBuilder将模型的“置信度”标注为抗体的一个组件(例如,CDRL3环)在均方根偏差阈值内被建模的概率。它还会标记模型上已知在体外开发过程中会导致问题的结构基序。ABodyBuilder在4个独立的数据集中进行了测试,包括来自抗体建模评估-II竞赛的11种抗体。ABodyBuilder构建的模型质量与其他方法相似,对“典型”CDR环的预测精度可达亚埃级别。它对纳米抗体进行建模以及快速生成模型(每个模型约30秒)的能力拓宽了其潜在用途。ABodyBuilder还可以帮助用户在新型抗体开发中进行决策,因为它提供了模型置信度和潜在的序列问题。可通过http://opig.stats.ox.ac.uk/webapps/abodybuilder免费获取ABodyBuilder。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7d0/5058620/2c3a9f29396e/kmab-08-07-1205773-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验