Suppr超能文献

用于先进储能设备的纳米纤维素:结构与电化学

Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.

作者信息

Chen Chaoji, Hu Liangbing

机构信息

Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States.

出版信息

Acc Chem Res. 2018 Dec 18;51(12):3154-3165. doi: 10.1021/acs.accounts.8b00391. Epub 2018 Oct 9.

Abstract

Cellulose is the most abundant biopolymer on Earth and has long been used as a sustainable building block of conventional paper. Note that nanocellulose accounts for nearly 40% of wood's weight and can be extracted using well-developed methods. Due to its appealing mechanical and electrochemical properties, including high specific modulus (∼100 GPa/(g/cm)), excellent stability in most solvents, and stability over a wide electrochemical window, nanocellulose has been widely used as a separator, electrolyte, binder, and substrate material for energy storage. Additionally, nanocellulose-derived carbon materials have also drawn increasing scientific interest in sustainable energy storage due to their low-cost and raw-material abundance, high conductivity, and rational electrochemical performance. The inexpensive and environmentally friendly nature of nanocellulose and its derivatives as well as simple fabrication techniques make nanocellulose-based energy storage devices promising candidates for the future of "green" and renewable electronics. For nanocellulose-based energy storage, structure engineering and design play a vital role in achieving desired electrochemical properties and performances. Thus, it is important to identify suitable structure and design engineering strategies and to better understand their relationship. In this Account, we review recent developments in nanocellulose-based energy storage. Due to the limited space, we will mainly focus on structure design and engineering strategies in macrofiber, paper, and three-dimensional (3D) structured electrochemical energy storage (EES) devices and highlight progress made in our group. We first present the structure and properties of nanocellulose, with a particular discussion of nanocellulose from wood materials. We then go on to discuss studies on nanocellulose-based macrofiber, paper, and 3D wood- and other aerogel-based EES devices. Within this discussion, we highlight the use of natural nanocellulose as a flexible substrate for a macrofiber supercapacitor and an excellent electrolyte reservoir for a breathable textile lithium-oxygen battery. Paper batteries and supercapacitors using nanocellulose as a green dispersant, nanocellulose-based paper as a flexible substrate, and nanocellulose as separator and electrolyte are also examined. We highlight recent progress on wood-based batteries and supercapacitors, focusing on the advantages of wood materials for energy storage, the structure design and engineering strategies, and their microstructure and electrochemical properties. We discuss the influence of structure (particularly pores) on the electrochemical performance of the energy storage devices. By taking advantage of the straight, nature-made channels in wood materials, ultrathick, highly loaded, and low-tortuosity energy storage devices are demonstrated. Finally, we offer concluding remarks on the challenges and directions of future research in the field of nanocellulose-based energy storage devices.

摘要

纤维素是地球上最丰富的生物聚合物,长期以来一直被用作传统纸张的可持续构建材料。需要注意的是,纳米纤维素占木材重量的近40%,并且可以使用成熟的方法进行提取。由于其具有吸引人的机械和电化学性能,包括高比模量(约100GPa/(g/cm))、在大多数溶剂中的优异稳定性以及在宽电化学窗口内的稳定性,纳米纤维素已被广泛用作储能的隔膜、电解质、粘合剂和基底材料。此外,纳米纤维素衍生的碳材料因其低成本、原料丰富、高导电性和合理的电化学性能,在可持续储能方面也引起了越来越多的科学关注。纳米纤维素及其衍生物的廉价和环境友好性质以及简单的制造技术,使得基于纳米纤维素的储能装置成为未来“绿色”和可再生电子产品的有前景的候选者。对于基于纳米纤维素的储能来说,结构工程和设计在实现所需的电化学性能方面起着至关重要的作用。因此,确定合适的结构和设计工程策略并更好地理解它们之间的关系很重要。在本综述中,我们回顾了基于纳米纤维素的储能的最新进展。由于篇幅有限,我们将主要关注宏观纤维、纸张和三维(3D)结构化电化学储能(EES)装置中的结构设计和工程策略,并突出我们团队取得的进展。我们首先介绍纳米纤维素的结构和性能,特别讨论来自木材材料的纳米纤维素。然后我们继续讨论基于纳米纤维素的宏观纤维、纸张以及基于3D木材和其他气凝胶的EES装置的研究。在这个讨论中,我们强调使用天然纳米纤维素作为宏观纤维超级电容器的柔性基底以及透气纺织锂氧电池的优异电解质储存库。还研究了使用纳米纤维素作为绿色分散剂、基于纳米纤维素的纸张作为柔性基底以及纳米纤维素作为隔膜和电解质的纸质电池和超级电容器。我们突出基于木材的电池和超级电容器的最新进展,重点关注木材材料在储能方面的优势、结构设计和工程策略以及它们的微观结构和电化学性能。我们讨论结构(特别是孔隙)对储能装置电化学性能的影响。通过利用木材材料中笔直的天然通道,展示了超厚、高负载和低曲折度的储能装置。最后,我们对基于纳米纤维素的储能装置领域未来研究的挑战和方向给出总结性评论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验