Penchev Hristo, Ivanova Galia, Hubenov Venelin, Boyadzieva Ivanka, Budurova Desislava, Ublekov Filip, Gigova Adriana, Stoyanova Antonia
Institute of Polymers, Bulgarian Academy of Sciences, "Acad. G. Bonchev" St., Bl.103A, 1113 Sofia, Bulgaria.
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, G. Bonchev Str. 10, 1113 Sofia, Bulgaria.
Membranes (Basel). 2025 Jan 8;15(1):12. doi: 10.3390/membranes15010012.
Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis. In this study, BNC was synthesized using a symbiotic microbial community. After production and purification, pristine BNC membranes, with an average thickness of 80 microns, were impregnated with an alkali-alcohol meta-polybenzimidazole (PBI) solution. This process yielded hybrid BNC/PBI membranes with improved ion-transport properties. The BNC membranes were then doped with a 6 M KOH solution, to enhance OH conductivity, and characterized using optical microscopy, ATR FT-IR, XRD, CVT, BET analysis, and impedance spectroscopy. Both BNC and BNC/PBI membranes were tested as separators in laboratory-scale symmetric supercapacitor cells, with performance compared to a commercial Viledon separator. The supercapacitors employing BNC membranes exhibited high specific capacitance and excellent cycling stability, retaining performance over 10,000 charge/discharge cycles. These findings underscore the potential of BNC/KOH membranes for next-generation supercapacitor applications.
超级电容器是先进的储能装置,以其快速的能量输送和较长的使用寿命而闻名,使其在各个行业中不可或缺。近年来,由于采用了环保材料,它们的相关性有所增加。一种这样的材料是细菌纳米纤维素(BNC),它完全由微生物来源产生,具有可持续性和生物过程驱动的合成方法。在本研究中,使用共生微生物群落合成了BNC。生产和纯化后,将平均厚度为80微米的原始BNC膜用碱-醇间苯二甲酰亚胺(PBI)溶液浸渍。该过程产生了具有改善的离子传输性能的混合BNC/PBI膜。然后将BNC膜用6 M KOH溶液掺杂,以提高OH传导率,并使用光学显微镜、ATR FT-IR、XRD、CVT、BET分析和阻抗谱进行表征。BNC和BNC/PBI膜均在实验室规模的对称超级电容器电池中作为隔膜进行测试,并与商用维勒多隔膜的性能进行比较。采用BNC膜的超级电容器表现出高比电容和出色的循环稳定性,在10,000次充放电循环中保持性能。这些发现强调了BNC/KOH膜在下一代超级电容器应用中的潜力。