Suppr超能文献

基于结构的虚拟筛选中结合态结构预测的计算策略:以蛋白酪氨酸磷酸酯酶受体 O 型抑制剂为例。

Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors.

机构信息

Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China.

Department of Chemistry , New York University , New York , New York 10003 , United States.

出版信息

J Chem Inf Model. 2018 Nov 26;58(11):2331-2342. doi: 10.1021/acs.jcim.8b00548. Epub 2018 Oct 19.

Abstract

Accurate protein structure in the ligand-bound state is a prerequisite for successful structure-based virtual screening (SBVS). Therefore, applications of SBVS against targets for which only an apo structure is available may be severely limited. To address this constraint, we developed a computational strategy to explore the ligand-bound state of a target protein, by combined use of molecular dynamics simulation, MM/GBSA binding energy calculation, and fragment-centric topographical mapping. Our computational strategy is validated against low-molecular weight protein tyrosine phosphatase (LMW-PTP) and then successfully employed in the SBVS against protein tyrosine phosphatase receptor type O (PTPRO), a potential therapeutic target for various diseases. The most potent hit compound GP03 showed an IC value of 2.89 μM for PTPRO and possessed a certain degree of selectivity toward other protein phosphatases. Importantly, we also found that neglecting the ligand energy penalty upon binding partially accounts for the false positive SBVS hits. The preliminary structure-activity relationships of GP03 analogs are also reported.

摘要

准确的配体结合状态下的蛋白质结构是成功进行基于结构的虚拟筛选 (SBVS) 的前提。因此,对于仅具有 apo 结构的靶标,SBVS 的应用可能会受到严重限制。为了解决这个限制,我们开发了一种计算策略,通过分子动力学模拟、MM/GBSA 结合能计算和基于片段的拓扑映射的组合,探索靶标蛋白的配体结合状态。我们的计算策略针对低分子量蛋白酪氨酸磷酸酶 (LMW-PTP) 进行了验证,然后成功应用于针对蛋白酪氨酸磷酸酶受体型 O (PTPRO) 的 SBVS,PTPRO 是多种疾病的潜在治疗靶标。最有效的命中化合物 GP03 对 PTPRO 的 IC 值为 2.89 μM,对其他蛋白磷酸酶具有一定的选择性。重要的是,我们还发现,在配体结合时忽略配体能量罚分部分解释了 SBVS 假阳性命中的原因。还报告了 GP03 类似物的初步结构-活性关系。

相似文献

3
Combined strategies in structure-based virtual screening.基于结构的虚拟筛选中的联合策略。
Phys Chem Chem Phys. 2020 Feb 14;22(6):3149-3159. doi: 10.1039/c9cp06303j. Epub 2020 Jan 29.

引用本文的文献

5
Targeting the C-Terminal Domain Small Phosphatase 1.靶向C端结构域小磷酸酶1
Life (Basel). 2020 May 8;10(5):57. doi: 10.3390/life10050057.
6
AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters.AlphaSpace 2.0:使用β-簇表示凹面生物分子表面
J Chem Inf Model. 2020 Mar 23;60(3):1494-1508. doi: 10.1021/acs.jcim.9b00652. Epub 2020 Feb 11.

本文引用的文献

1
Targeting Unoccupied Surfaces on Protein-Protein Interfaces.靶向蛋白质-蛋白质界面的未占据表面。
J Am Chem Soc. 2017 Nov 8;139(44):15560-15563. doi: 10.1021/jacs.7b05960. Epub 2017 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验