Sivamani Selvaraju, Baskar Rajoo
a Department of Biotechnology , Kumaraguru College of Technology , Coimbatore , India.
b Department of Food Technology, School of Chemical and Food Sciences , Kongu Engineering College , Erode , India.
Prep Biochem Biotechnol. 2018;48(9):834-841. doi: 10.1080/10826068.2018.1514512. Epub 2018 Oct 10.
Bioethanol production from agro-industrial residues is gaining attention because of the limited production of starch grains and sugarcane, and food-fuel conflict. The aim of the present study is to maximize the bioethanol production using cassava bagasse as a feedstock. Enzymatic liquefaction, by α-amylase, followed by simultaneous saccharification and fermentation (SSF), using glucoamylase and Zymomonas mobilis MTCC 2427, was investigated for bioethanol production from cassava bagasse. The factors influencing ethanol production process were identified and screened for significant factors using Plackett-Burman design. The significant factors (cassava bagasse concentration (10-50 g/L), concentration of α-amylase (5-25% (v/v), and temperature of fermentation (27-37 °C)) were optimized by employing Box-Behnken design and genetic algorithm. The maximum ethanol concentrations of 25.594 g/L and 25.910 g/L were obtained from Box-Behnken design and genetic algorithm, respectively, under optimum conditions. Thus, the study provides valuable insights in utilizing the cost-effective industrial residue, cassava bagasse, for the bioethanol production.
由于淀粉谷物和甘蔗产量有限以及粮食与燃料的冲突,利用农业工业残渣生产生物乙醇正受到关注。本研究的目的是使用木薯渣作为原料,使生物乙醇产量最大化。研究了用α-淀粉酶进行酶液化,然后使用葡糖淀粉酶和运动发酵单胞菌MTCC 2427进行同步糖化发酵(SSF)以从木薯渣生产生物乙醇的方法。使用Plackett-Burman设计确定并筛选了影响乙醇生产过程的因素,找出显著因素。通过采用Box-Behnken设计和遗传算法对显著因素(木薯渣浓度(10 - 50 g/L)、α-淀粉酶浓度(5 - 25%(v/v))和发酵温度(27 - 37 °C))进行了优化。在最佳条件下,分别通过Box-Behnken设计和遗传算法获得的最大乙醇浓度为25.594 g/L和25.910 g/L。因此,该研究为利用具有成本效益的工业残渣木薯渣生产生物乙醇提供了有价值的见解。