Suppr超能文献

合作网络中集体绩效的动态变化。

Dynamics of collective performance in collaboration networks.

机构信息

Warren Center for Network & Data Sciences, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.

Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, United States of America.

出版信息

PLoS One. 2018 Oct 10;13(10):e0204547. doi: 10.1371/journal.pone.0204547. eCollection 2018.

Abstract

Today, many complex tasks are assigned to teams, rather than individuals. One reason for teaming up is expansion of the skill coverage of each individual to the joint team skill set. However, numerous empirical studies of human groups suggest that the performance of equally skilled teams can widely differ. Two natural question arise: What are the factors defining team performance? and How can we best predict the performance of a given team on a specific task? While the team members' task-related capabilities constrain the potential for the team's success, the key to understanding team performance is in the analysis of the team process, encompassing the behaviors of the team members during task completion. In this study, we extend the existing body of research on team process and prediction models of team performance. Specifically, we analyze the dynamics of historical team performance over a series of tasks as well as the fine-grained patterns of collaboration between team members, and formally connect these dynamics to the team performance in the predictive models. Our major qualitative finding is that higher performing teams have well-connected collaboration networks-as indicated by the topological and spectral properties of the latter-which are more robust to perturbations, and where network processes spread more efficiently. Our major quantitative finding is that our predictive models deliver accurate team performance predictions-with a prediction error of 15-25%-on a variety of simple tasks, outperforming baseline models that do not capture the micro-level dynamics of team member behaviors. We also show how to use our models in an application, for optimal online planning of workload distribution in an organization. Our findings emphasize the importance of studying the dynamics of team collaboration as the major driver of high performance in teams.

摘要

如今,许多复杂任务都是由团队完成,而非个人。团队合作的原因之一是每个人的技能覆盖范围扩展到了联合团队的技能集。然而,大量关于人类群体的实证研究表明,同等技能的团队的表现可能存在很大差异。由此产生了两个自然问题:定义团队绩效的因素是什么?以及如何最好地预测给定团队在特定任务上的表现?虽然团队成员的任务相关能力限制了团队成功的潜力,但理解团队绩效的关键在于对团队过程的分析,包括团队成员在完成任务期间的行为。在这项研究中,我们扩展了现有的团队过程研究和团队绩效预测模型的研究。具体来说,我们分析了一系列任务中历史团队绩效的动态以及团队成员之间协作的细粒度模式,并在预测模型中将这些动态正式与团队绩效联系起来。我们的主要定性发现是,表现更好的团队具有连接更好的协作网络——这反映在后一种网络的拓扑和谱性质上——后者对干扰更具鲁棒性,并且网络过程传播更有效率。我们的主要定量发现是,我们的预测模型能够对各种简单任务进行准确的团队绩效预测——预测误差为 15-25%——优于不捕捉团队成员行为微观动态的基准模型。我们还展示了如何在组织中在线规划工作负载分配的应用程序中使用我们的模型。我们的研究结果强调了研究团队协作动态作为团队高绩效的主要驱动力的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc57/6179230/dc049a616789/pone.0204547.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验