Suppr超能文献

慢性阻塞性肺疾病的影像学进展。来自慢性阻塞性肺疾病(COPDGene)研究的遗传流行病学的见解。

Imaging Advances in Chronic Obstructive Pulmonary Disease. Insights from the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) Study.

机构信息

1 UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.

2 Division of Pulmonary and Critical Care Medicine.

出版信息

Am J Respir Crit Care Med. 2019 Feb 1;199(3):286-301. doi: 10.1164/rccm.201807-1351SO.

Abstract

The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, which began in 2007, is an ongoing multicenter observational cohort study of more than 10,000 current and former smokers. The study is aimed at understanding the etiology, progression, and heterogeneity of chronic obstructive pulmonary disease (COPD). In addition to genetic analysis, the participants have been extensively characterized by clinical questionnaires, spirometry, volumetric inspiratory and expiratory computed tomography, and longitudinal follow-up, including follow-up computed tomography at 5 years after enrollment. The purpose of this state-of-the-art review is to summarize the major advances in our understanding of COPD resulting from the imaging findings in the COPDGene study. Imaging features that are associated with adverse clinical outcomes include early interstitial lung abnormalities, visual presence and pattern of emphysema, the ratio of pulmonary artery to ascending aortic diameter, quantitative evaluation of emphysema, airway wall thickness, and expiratory gas trapping. COPD is characterized by the early involvement of the small conducting airways, and the addition of expiratory scans has enabled measurement of small airway disease. Computational advances have enabled indirect measurement of nonemphysematous gas trapping. These metrics have provided insights into the pathogenesis and prognosis of COPD and have aided early identification of disease. Important quantifiable extrapulmonary findings include coronary artery calcification, cardiac morphology, intrathoracic and extrathoracic fat, and osteoporosis. Current active research includes identification of novel quantitative measures for emphysema and airway disease, evaluation of dose reduction techniques, and use of deep learning for phenotyping COPD.

摘要

慢性阻塞性肺疾病(COPD)基因研究(COPDGene)于 2007 年启动,是一项正在进行的、多中心的、针对 1 万多名现吸烟者和前吸烟者的观察性队列研究。该研究旨在了解慢性阻塞性肺疾病(COPD)的病因、进展和异质性。除了基因分析外,研究对象还通过临床问卷、肺活量测定、容积吸气和呼气计算机断层扫描以及纵向随访(包括入组后 5 年的随访计算机断层扫描)进行了广泛的特征描述。本综述的目的是总结 COPDGene 研究中的影像学发现对我们理解 COPD 的主要进展。与不良临床结局相关的影像学特征包括早期间质肺异常、肺气肿的可视存在和模式、肺动脉与升主动脉直径比、肺气肿的定量评估、气道壁厚度和呼气气体潴留。COPD 的特征是小气道的早期受累,呼气扫描的增加使得小气道疾病的测量成为可能。计算方面的进展使非肺气肿性气体潴留的间接测量成为可能。这些指标提供了对 COPD 的发病机制和预后的深入了解,并有助于早期识别疾病。重要的可量化的肺外发现包括冠状动脉钙化、心脏形态、胸内和胸外脂肪以及骨质疏松症。目前的活跃研究包括确定新的定量肺气肿和气道疾病指标、评估剂量减少技术以及使用深度学习对 COPD 进行表型分析。

相似文献

7
Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD.
Respir Res. 2013 Apr 8;14(1):42. doi: 10.1186/1465-9921-14-42.
10
Prediction of disease severity in COPD: a deep learning approach for anomaly-based quantitative assessment of chest CT.
Eur Radiol. 2024 Jul;34(7):4379-4392. doi: 10.1007/s00330-023-10540-3. Epub 2023 Dec 27.

引用本文的文献

1
Changes in lung function in children after pneumonia: a multicenter study.
Ital J Pediatr. 2025 Aug 15;51(1):252. doi: 10.1186/s13052-025-02092-7.
3
Differentiating Emphysema From Emphysema-Dominated COPD Patients with CT Imaging Feature and Machine Learning.
Int J Chron Obstruct Pulmon Dis. 2025 Jul 25;20:2615-2628. doi: 10.2147/COPD.S527914. eCollection 2025.
4
6
Do You Believe in Magic? Computed Tomography, Artificial Intelligence, and Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2025 Jul;211(7):1112-1113. doi: 10.1164/rccm.202502-0521ED.
7
Omic Risk Scores are Associated with COPD-related Traits Across Three Cohorts.
medRxiv. 2025 Jun 2:2025.06.01.25328699. doi: 10.1101/2025.06.01.25328699.
9
Effects of Intra-patient Lung Volume Variability on CT-Based Emphysema Quantification: A Virtual Imaging Study.
Acad Radiol. 2025 Aug;32(8):4913-4921. doi: 10.1016/j.acra.2025.04.042. Epub 2025 May 9.
10
Quantitative CT Scoring for Local COPD Severity.
medRxiv. 2025 May 14:2025.04.09.25324951. doi: 10.1101/2025.04.09.25324951.

本文引用的文献

1
CT Image Enhancement for Feature Detection and Localization.
Med Image Comput Comput Assist Interv. 2017 Sep;10434:224-232. doi: 10.1007/978-3-319-66185-8_26. Epub 2017 Sep 4.
2
DEEP-LEARNING STRATEGY FOR PULMONARY ARTERY-VEIN CLASSIFICATION OF NON-CONTRAST CT IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:384-387. doi: 10.1109/isbi.2017.7950543. Epub 2017 Jun 19.
3
EMPHYSEMA CLASSIFICATION USING A MULTI-VIEW CONVOLUTIONAL NETWORK.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:519-522. doi: 10.1109/isbi.2018.8363629. Epub 2018 May 24.
4
Interstitial Features at Chest CT Enhance the Deleterious Effects of Emphysema in the COPDGene Cohort.
Radiology. 2018 Aug;288(2):600-609. doi: 10.1148/radiol.2018172688. Epub 2018 Jun 5.
5
CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study.
Radiology. 2018 Sep;288(3):859-866. doi: 10.1148/radiol.2018172294. Epub 2018 May 15.
6
Features of COPD as Predictors of Lung Cancer.
Chest. 2018 Jun;153(6):1326-1335. doi: 10.1016/j.chest.2018.01.049. Epub 2018 Feb 13.
7
Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression.
Chest. 2018 Jan;153(1):65-76. doi: 10.1016/j.chest.2017.09.022. Epub 2017 Sep 21.
8
Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography.
Am J Respir Crit Care Med. 2018 Jan 15;197(2):193-203. doi: 10.1164/rccm.201705-0860OC.
9
Chronic Obstructive Pulmonary Disease Genetics: A Review of the Past and a Look Into the Future.
Chronic Obstr Pulm Dis. 2014 May 6;1(1):33-46. doi: 10.15326/jcopdf.1.1.2014.0120.
10
Recent Advances in Computed Tomography Imaging in Chronic Obstructive Pulmonary Disease.
Ann Am Thorac Soc. 2018 Mar;15(3):281-289. doi: 10.1513/AnnalsATS.201705-377FR.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验