Suppr超能文献

利用基于深度学习的内核转换在CT上进行更精确的气道定量分析。

Leveraging deep learning-based kernel conversion for more precise airway quantification on CT.

作者信息

Choe Jooae, Yun Jihye, Kim Myeong Jun, Oh Yu Jin, Bae Seungbin, Yu Donghoon, Seo Joon Beom, Lee Sang Min, Lee Ho Yun

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.

Department of Convergence Medicine, Biomedical Engineering Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.

出版信息

Eur Radiol. 2025 May 22. doi: 10.1007/s00330-025-11696-w.

Abstract

OBJECTIVES

To evaluate the variability of fully automated airway quantitative CT (QCT) measures caused by different kernels and the effect of kernel conversion.

MATERIALS AND METHODS

This retrospective study included 96 patients who underwent non-enhanced chest CT at two centers. CT scans were reconstructed using four kernels (medium soft, medium sharp, sharp, very sharp) from three vendors. Kernel conversion targeting the medium soft kernel as reference was applied to sharp kernel images. Fully automated airway quantification was performed before and after conversion. The effects of kernel type and conversion on airway quantification were evaluated using analysis of variance, paired t-tests, and concordance correlation coefficient (CCC).

RESULTS

Airway QCT measures (e.g., Pi10, wall thickness, wall area percentage, lumen diameter) decreased with sharper kernels (all, p < 0.001), with varying degrees of variability across variables and vendors. Kernel conversion substantially reduced variability between medium soft and sharp kernel images for vendors A (pooled CCC: 0.59 vs. 0.92) and B (0.40 vs. 0.91) and lung-dedicated sharp kernels of vendor C (0.26 vs. 0.71). However, it was ineffective for non-lung-dedicated sharp kernels of vendor C (0.81 vs. 0.43) and showed limited improvement in variability of QCT measures at the subsegmental level. Consistent airway segmentation and identical anatomic labeling improved subsegmental airway variability in theoretical tests.

CONCLUSION

Deep learning-based kernel conversion reduced the measurement variability of airway QCT across various kernels and vendors but was less effective for non-lung-dedicated kernels and subsegmental airways. Consistent airway segmentation and precise anatomic labeling can further enhance reproducibility for reliable automated quantification.

KEY POINTS

Question How do different CT reconstruction kernels affect the measurement variability of automated airway measurements, and can deep learning-based kernel conversion reduce this variability? Findings Kernel conversion improved measurement consistency across vendors for lung-dedicated kernels, but showed limited effectiveness for non-lung-dedicated kernels and subsegmental airways. Clinical relevance Understanding kernel-related variability in airway quantification and mitigating it through deep learning enables standardized analysis, but further refinements are needed for robust airway segmentation, particularly for improving measurement variability in subsegmental airways and specific kernels.

摘要

目的

评估不同卷积核导致的全自动化气道定量CT(QCT)测量的变异性以及卷积核转换的效果。

材料与方法

这项回顾性研究纳入了96例在两个中心接受非增强胸部CT检查的患者。使用来自三个供应商的四种卷积核(中等软组织卷积核、中等锐利卷积核、锐利卷积核、非常锐利卷积核)重建CT扫描图像。以中等软组织卷积核为参考,对锐利卷积核图像进行卷积核转换。在转换前后进行全自动化气道定量分析。使用方差分析、配对t检验和一致性相关系数(CCC)评估卷积核类型和转换对气道定量分析的影响。

结果

气道QCT测量值(如Pi10、管壁厚度、管壁面积百分比、管腔直径)随着卷积核锐度增加而降低(所有情况,p < 0.001),不同变量和供应商之间的变异性程度各异。卷积核转换显著降低了供应商A(合并CCC:0.59对0.92)和供应商B(0.40对0.91)的中等软组织卷积核与锐利卷积核图像之间的变异性,以及供应商C的肺部专用锐利卷积核(0.26对0.71)之间的变异性。然而,对于供应商C的非肺部专用锐利卷积核(0.81对0.43)无效,并且在亚段水平上QCT测量值的变异性改善有限。在理论测试中,一致的气道分割和相同的解剖标记改善了亚段气道的变异性。

结论

基于深度学习的卷积核转换降低了不同卷积核和供应商之间气道QCT测量的变异性,但对非肺部专用卷积核和亚段气道效果较差。一致的气道分割和精确的解剖标记可进一步提高可重复性,以实现可靠的自动化定量分析。

关键点

问题不同的CT重建卷积核如何影响自动化气道测量的测量变异性,基于深度学习的卷积核转换能否降低这种变异性?研究结果卷积核转换提高了肺部专用卷积核在不同供应商之间的测量一致性,但对非肺部专用卷积核和亚段气道效果有限。临床意义了解气道定量分析中与卷积核相关的变异性并通过深度学习减轻这种变异性有助于实现标准化分析,但对于稳健的气道分割还需要进一步改进,特别是对于改善亚段气道和特定卷积核的测量变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验