Sibley D R, Benovic J L, Caron M G, Lefkowitz R J
Cell. 1987 Mar 27;48(6):913-22. doi: 10.1016/0092-8674(87)90700-8.
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.
已确定受体磷酸化至少有两个主要作用——调节受体功能和调节受体分布。在许多磷酸化直接改变受体功能的情况下,这种改变似乎是负面的。受体活性的这种降低可能反映出与生化效应器相互作用的能力下降(例如β-肾上腺素能受体、视紫红质)、与激动剂配体结合的亲和力降低(表皮生长因子、胰岛素样生长因子-I、胰岛素受体)或酶活性降低(例如胰岛素或表皮生长因子受体的酪氨酸激酶活性)。在所有情况下,这些负面调节都与受体蛋白的丝氨酸和/或苏氨酸残基的磷酸化有关。相比之下,酪氨酸激酶受体似乎也容易受到磷酸化的正向调节。对于这些受体,酪氨酸残基的自磷酸化可能导致受体的蛋白酪氨酸激酶活性增强以及受体功能增加。此外,受体的亚细胞分布可能受其磷酸化状态的调节(例如β-肾上腺素能受体、胰岛素、表皮生长因子、胰岛素样生长因子-II和转铁蛋白的受体)。新出现的模式是,受体磷酸化可能以某种方式促进受体内化到发生去磷酸化的隔离区室中。将受体磷酸化的变化转化为受体分布变化所涉及的分子和细胞机制仍有待阐明。此外,受体内化的生物学作用可能多种多样。因此,就β-肾上腺素能受体而言,它可能主要作为一种机制,使磷酸化的受体与使它去磷酸化并使其重新敏感的细胞内磷酸酶接触。相比之下,对于转铁蛋白受体和参与受体介导的内吞作用的其他受体,内化大概起到将某些特定配体或代谢物带入细胞的作用。磷酸化在调节受体功能方面的作用极大地扩展了这种重要共价修饰的调节控制范围。