Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
Sci Rep. 2018 Oct 10;8(1):15082. doi: 10.1038/s41598-018-33363-5.
Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-C]pyruvate and ethyl-[1-C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the in vivo porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.
利用动态核极化进行的超极化 MRI 克服了传统磁共振的基本热力学限制,并正在向人体研究转化,目前正在进行几项早期临床试验,包括早期报告表明该技术可用于观察人脑癌症患者中乳酸的产生。由于代谢和组织功能的基本耦合,利用超极化 [1-C]丙酮酸进行代谢神经影像学具有在许多神经疾病(例如脑肿瘤、缺血性中风和多发性硬化症)中具有革命性的潜力。通过在未成熟大脑、转移到大脑的啮齿动物模型或经受甘露醇渗透冲击的猪脑中原位使用 [1-C]丙酮酸和乙基-[1-C]丙酮酸,我们表明,麻醉动物的血脑屏障中丙酮酸的转运是限速的。我们通过使用经过充分表征的脑转移大鼠模型表明,超极化 [1-C]乳酸产生的出现对应于疾病中血脑屏障破裂的点。对于更亲脂的乙基-[1-C]丙酮酸,我们观察到丙酮酸在整个大脑中内源性产生,而仅在疾病区域产生乳酸。在体内猪脑研究中,我们发现甘露醇休克足以使血脑屏障通透性增加 90 倍,导致大脑中丙酮酸的转运和转化为乳酸,否则这是无法解决的。这表明,在麻醉动物中进行的全脑代谢的早期报告可能受到部分体积效应的混淆,并且对转化研究的信息不足。因此,在研究麻醉动物的神经代谢时,必须考虑到与丙酮酸转运和部分体积效应相关的问题,并且我们还注意到,这些相同的技术可能为未来的研究提供血脑屏障通透性的独特生物标志物。