Jiménez José, Díaz-Ruiz Francisco, Monterroso Pedro, Tobajas Jorge, Ferreras Pablo
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM) Ciudad Real Spain.
Departamento de Biología Animal, Facultad de Ciencias Universidad de Málaga Málaga Spain.
Ecol Evol. 2022 Aug 26;12(8):e9250. doi: 10.1002/ece3.9250. eCollection 2022 Aug.
Population size is one of the basic demographic parameters for species management and conservation. Among different estimation methods, spatially explicit capture-recapture (SCR) models allow the estimation of population density in a framework that has been greatly developed in recent years. The use of automated detection devices, such as camera traps, has impressively extended SCR studies for individually identifiable species. However, its application to unmarked/partially marked species remains challenging, and no specific method has been widely used. We fitted an SCR-integrated model (SCR-IM) to stone marten data, a species for which only some individuals are individually recognizable by natural marks, and estimate population size based on integration of three submodels: (1) individual capture histories from live capture and transponder tagging; (2) detection/nondetection or "occupancy" data using camera traps in a bigger area to extend the geographic scope of capture-recapture data; and (3) telemetry data from a set of tagged individuals. We estimated a stone marten density of 0.352 (SD: 0.081) individuals/km. We simulated four dilution scenarios of occupancy data to study the variation in the coefficient of variation in population size estimates. We also used simulations with similar characteristics as the stone marten case study, comparing the accuracy and precision obtained from SCR-IM and SCR, to understand how submodels' integration affects the posterior distributions of estimated parameters. Based on our simulations, we found that population size estimates using SCR-IM are more accurate and precise. In our stone marten case study, the SCR-IM density estimation increased the precision by 37% when compared to the standard SCR model as regards to the coefficient of variation. This model has high potential to be used for species in which individual recognition by natural markings is not possible, therefore limiting the need to rely on invasive sampling procedures.
种群大小是物种管理和保护的基本人口统计学参数之一。在不同的估计方法中,空间明确捕获-重捕(SCR)模型允许在近年来得到极大发展的框架内估计种群密度。自动检测设备(如相机陷阱)的使用显著扩展了针对个体可识别物种的SCR研究。然而,将其应用于未标记/部分标记的物种仍然具有挑战性,且尚无被广泛使用的特定方法。我们将一个SCR集成模型(SCR-IM)应用于石貂数据,对于该物种,只有一些个体可通过自然标记被单独识别,并且基于三个子模型的整合来估计种群大小:(1)来自活体捕获和应答器标记的个体捕获历史;(2)在更大区域使用相机陷阱的检测/未检测或“占用”数据,以扩展捕获-重捕数据的地理范围;(3)一组标记个体的遥测数据。我们估计石貂的密度为0.352(标准差:0.081)只/平方公里。我们模拟了占用数据的四种稀释情景,以研究种群大小估计中变异系数的变化。我们还使用了与石貂案例研究具有相似特征的模拟,比较了从SCR-IM和SCR获得的准确性和精确性,以了解子模型的整合如何影响估计参数的后验分布。基于我们的模拟,我们发现使用SCR-IM进行的种群大小估计更准确和精确。在我们的石貂案例研究中,就变异系数而言,与标准SCR模型相比,SCR-IM密度估计的精确性提高了37%。该模型具有很高的潜力可用于无法通过自然标记进行个体识别的物种,因此减少了依赖侵入性采样程序的必要性。