Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois.
Med Res Rev. 2019 Mar;39(2):749-770. doi: 10.1002/med.21540. Epub 2018 Oct 11.
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing protein-protein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides.
鉴于 ⍺-螺旋在蛋白质组中的普遍性,已经有很多研究致力于开发 ⍺-螺旋类似物,其中大部分研究旨在开发蛋白-蛋白相互作用抑制剂。模拟 ⍺-螺旋的常用策略是使用受约束的螺旋肽。添加约束通常可提供构象和蛋白水解稳定性,在某些情况下还可提供细胞通透性。其中一些最著名的策略包括形成内酰胺和烃“订书钉”。除此之外,在开发约束肽方面已经取得了许多新的进展。本文的目的是重点介绍开发新的螺旋稳定技术、约束多样化策略、连接臂多样化策略以及创建新的双环螺旋肽的组合策略方面的最新进展。