Suppr超能文献

相似文献

1
Sweet Sorghum Originated through Selection of , a Plant-Specific NAC Transcription Factor Gene.
Plant Cell. 2018 Oct;30(10):2286-2307. doi: 10.1105/tpc.18.00313. Epub 2018 Oct 11.
3
Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8783-E8792. doi: 10.1073/pnas.1807501115. Epub 2018 Aug 27.
4
Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor).
Genome Biol. 2011 Nov 21;12(11):R114. doi: 10.1186/gb-2011-12-11-r114.
7
Parallel Domestication of the Heading Date 1 Gene in Cereals.
Mol Biol Evol. 2015 Oct;32(10):2726-37. doi: 10.1093/molbev/msv148. Epub 2015 Jun 27.
8
Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum.
Theor Appl Genet. 2015 Sep;128(9):1669-83. doi: 10.1007/s00122-015-2523-z. Epub 2015 May 16.
9
Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
Plant Signal Behav. 2016;11(1):e1117721. doi: 10.1080/15592324.2015.1117721.
10
Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
Gene. 2015 Oct 25;571(2):221-30. doi: 10.1016/j.gene.2015.06.056. Epub 2015 Jun 25.

引用本文的文献

1
Forage Crop Research in the Modern Age.
Adv Sci (Weinh). 2025 Jul;12(27):e2415631. doi: 10.1002/advs.202415631. Epub 2025 Jun 30.
4
Salt stress-induced remodeling of sugar transport: a role for promoter alleles of SWEET13.
Sci Rep. 2025 Mar 4;15(1):7580. doi: 10.1038/s41598-025-90432-2.
5
Decoding the genetic blueprint: regulation of key agricultural traits in sorghum.
Adv Biotechnol (Singap). 2024 Sep 18;2(4):31. doi: 10.1007/s44307-024-00039-3.
6
A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci.
Plant J. 2024 Dec;120(5):2172-2192. doi: 10.1111/tpj.17111. Epub 2024 Nov 1.
8
A complete assembly of the sorghum BTx623 reference genome.
Plant Commun. 2024 Jun 10;5(6):100977. doi: 10.1016/j.xplc.2024.100977. Epub 2024 May 15.
9
Major impacts of widespread structural variation on sorghum.
Genome Res. 2024 Mar 20;34(2):286-299. doi: 10.1101/gr.278396.123.
10
Genetic diversity, population structure and anthracnose resistance response in a novel sweet sorghum diversity panel.
Front Plant Sci. 2023 Oct 20;14:1249555. doi: 10.3389/fpls.2023.1249555. eCollection 2023.

本文引用的文献

1
Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application.
Plant Biotechnol J. 2018 Jul;16(7):1388-1395. doi: 10.1111/pbi.12879. Epub 2018 Feb 6.
2
Sweet sorghum as biofuel feedstock: recent advances and available resources.
Biotechnol Biofuels. 2017 Jun 8;10:146. doi: 10.1186/s13068-017-0834-9. eCollection 2017.
3
GSA: Genome Sequence Archive<sup/>.
Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18. doi: 10.1016/j.gpb.2017.01.001. Epub 2017 Feb 2.
4
PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045. doi: 10.1093/nar/gkw982. Epub 2016 Oct 24.
5
The BIG Data Center: from deposition to integration to translation.
Nucleic Acids Res. 2017 Jan 4;45(D1):D18-D24. doi: 10.1093/nar/gkw1060. Epub 2016 Nov 28.
7
Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees.
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5. doi: 10.1093/nar/gkw290. Epub 2016 Apr 19.
8
SorGSD: a sorghum genome SNP database.
Biotechnol Biofuels. 2016 Jan 7;9:6. doi: 10.1186/s13068-015-0415-8. eCollection 2016.
9
Ferns: the missing link in shoot evolution and development.
Front Plant Sci. 2015 Nov 6;6:972. doi: 10.3389/fpls.2015.00972. eCollection 2015.
10
IBS: an illustrator for the presentation and visualization of biological sequences.
Bioinformatics. 2015 Oct 15;31(20):3359-61. doi: 10.1093/bioinformatics/btv362. Epub 2015 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验