Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
Plant Physiol. 2019 Mar;179(3):1013-1027. doi: 10.1104/pp.18.01026. Epub 2018 Oct 11.
Geranylgeranyl diphosphate (GGPP), a prenyl diphosphate synthesized by GGPP synthase (GGPS), represents a metabolic hub for the synthesis of key isoprenoids, such as chlorophylls, tocopherols, phylloquinone, gibberellins, and carotenoids. Protein-protein interactions and the amphipathic nature of GGPP suggest metabolite channeling and/or competition for GGPP among enzymes that function in independent branches of the isoprenoid pathway. To investigate substrate conversion efficiency between the plastid-localized GGPS isoform GGPS11 and phytoene synthase (PSY), the first enzyme of the carotenoid pathway, we used recombinant enzymes and determined their in vitro properties. Efficient phytoene biosynthesis via PSY strictly depended on simultaneous GGPP supply via GGPS11. In contrast, PSY could not access freely diffusible GGPP or time-displaced GGPP supply via GGPS11, presumably due to liposomal sequestration. To optimize phytoene biosynthesis, we applied a synthetic biology approach and constructed a chimeric GGPS11-PSY metabolon (PYGG). PYGG converted GGPP to phytoene almost quantitatively in vitro and did not show the GGPP leakage typical of the individual enzymes. expression in Arabidopsis resulted in orange-colored cotyledons, which are not observed if or are overexpressed individually. This suggests insufficient GGPP substrate availability for chlorophyll biosynthesis achieved through GGPP flux redirection to carotenogenesis. Similarly, carotenoid levels in -expressing callus exceeded that in - or -overexpression lines. The PYGG chimeric protein may assist in provitamin A biofortification of edible plant parts. Moreover, other GGPS fusions may be used to redirect metabolic flux into the synthesis of other isoprenoids of nutritional and industrial interest.
香叶基二磷酸(GGPP)是一种由香叶基二磷酸合酶(GGPS)合成的 prenyl diphosphate,是合成关键类异戊二烯的代谢中心,如叶绿素、生育酚、叶绿醌、赤霉素和类胡萝卜素。GGPP 蛋白-蛋白相互作用和两亲性表明代谢物在异戊二烯途径的独立分支中发挥作用的酶之间存在代谢物通道化和/或对 GGPP 的竞争。为了研究质体定位的 GGPS 同工型 GGPS11 与类胡萝卜素途径的第一酶phytoene synthase(PSY)之间的底物转化效率,我们使用重组酶并确定了它们的体外特性。通过 PSY 进行有效的类胡萝卜素生物合成严格依赖于通过 GGPS11 同时提供 GGPP。相比之下,PSY 无法自由扩散的 GGPP 或通过 GGPS11 时间推移的 GGPP 供应,可能是由于脂质体隔离。为了优化类胡萝卜素生物合成,我们应用了合成生物学方法并构建了嵌合 GGPS11-PSY 代谢物(PYGG)。PYGG 在体外几乎定量地将 GGPP 转化为phytoene,并且没有表现出典型的单个酶的 GGPP 泄漏。在拟南芥中的表达导致子叶呈橙色,而单独过表达 或 时则观察不到。这表明通过 GGPP 流重定向到类胡萝卜素生物合成来实现叶绿素生物合成的 GGPP 底物可用性不足。同样,表达的愈伤组织中的类胡萝卜素水平超过了或过表达系。PYGG 嵌合蛋白可能有助于可食用植物部分的维生素 A 生物强化。此外,其他 GGPS 融合可能用于将代谢通量重新定向到其他具有营养和工业兴趣的类异戊二烯的合成中。