Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
Sci Rep. 2018 Oct 11;8(1):15158. doi: 10.1038/s41598-018-33588-4.
The three-dimensional organization of the eukaryotic genome is important for its structure and function. Recent studies indicate that hierarchies of chromatin loops underlie important aspects of both genomic organization and gene regulation. Looping between insulator or boundary elements interferes with enhancer-promoter communications and limits the spread active or repressive organized chromatin. We have used the SF1 insulator in the Drosophila Antennapedia homeotic gene complex (ANT-C) as a model to study the mechanism and regulation of chromatin looping events. We reported previously that SF1 tethers a transient chromatin loop in the early embryo that insulates the Hox gene Sex comb reduce from the neighbor non-Hox gene fushi tarazu for their independent regulation. To further probe the functional range and connectivity of SF1, we used high-resolution chromosomal conformation capture (3C) to search for SF1 looping partners across ANT-C. We report here the identification of three distal SF1 Tether Elements (STEs) located in the labial, Deformed and Antennapedia Hox gene regions, extending the range of SF1 looping network to the entire complex. These novel STEs are bound by four different combinations of insulator proteins and exhibit distinct behaviors in enhancer block, enhancer-bypass and boundary functions. Significantly, the six STEs we identified so far map to all but one of the major boundaries between repressive and active histone domains, underlining the functional relevance of these long-range chromatin loops in organizing the Hox complex. Importantly, SF1 selectively captured with only 5 STEs out of ~20 sites that display similar insulator binding profiles, indicating that presence of insulator proteins alone is not sufficient to determine looping events. These findings suggest that selective interaction among diverse STE insulators organize the Drosophila Hox genes in the 3D nuclear space.
真核生物基因组的三维组织对于其结构和功能至关重要。最近的研究表明,染色质环的层次结构是基因组组织和基因调控的重要基础。绝缘子或边界元件之间的环化干扰了增强子-启动子的通讯,并限制了活性或抑制性有组织染色质的扩散。我们使用果蝇触角足畸形同源异型基因复合物(ANT-C)中的 SF1 绝缘子作为模型,研究染色质环化事件的机制和调控。我们之前报道过,SF1 在早期胚胎中固定瞬时染色质环,使 Hox 基因 Sex comb reduce 与相邻的非 Hox 基因 fushi tarazu 隔离,从而实现独立调控。为了进一步探究 SF1 的功能范围和连接性,我们使用高分辨率染色体构象捕获(3C)技术在 ANT-C 中搜索 SF1 的环化伙伴。我们在此报告鉴定了三个位于唇瓣、变形和触角足畸形 Hox 基因区域的远端 SF1 系绳元件(STE),将 SF1 环化网络的范围扩展到整个复合物。这些新的 STE 被四种不同的绝缘子蛋白结合,并在增强子阻断、增强子绕过和边界功能中表现出不同的行为。值得注意的是,到目前为止,我们鉴定的六个 STE 映射到除一个主要的抑制性和活性组蛋白域之间的边界之外的所有边界,这强调了这些长距离染色质环在组织 Hox 复合物方面的功能相关性。重要的是,SF1 仅与 5 个 STE 选择性结合,而这些 STE 仅占显示类似绝缘子结合谱的约 20 个位点中的 5 个,这表明仅仅存在绝缘子蛋白不足以决定环化事件。这些发现表明,不同 STE 绝缘子之间的选择性相互作用组织了果蝇 Hox 基因在 3D 核空间中的排列。