Suppr超能文献

222 纳米氪-氯准分子灯与 254 纳米低压汞灯协同杀菌机制的研究

The Synergistic Bactericidal Mechanism of Simultaneous Treatment with a 222-Nanometer Krypton-Chlorine Excilamp and a 254-Nanometer Low-Pressure Mercury Lamp.

机构信息

Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea.

Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.

出版信息

Appl Environ Microbiol. 2018 Dec 13;85(1). doi: 10.1128/AEM.01952-18. Print 2019 Jan 1.

Abstract

The purpose of this study was to investigate the synergistic bactericidal effect of 222-nm KrCl excilamp and 254-nm low-pressure (LP) Hg lamp simultaneous treatment against O157:H7, subsp. serovar Typhimurium, and in tap water and to identify the synergistic bactericidal mechanism. Sterilized tap water inoculated with pathogens was treated individually or simultaneously with a 254-nm LP Hg lamp or 222-nm KrCl excilamp. Overall, for all pathogens, an additional reduction was found compared to the sum of the log unit reductions of the individual treatments resulting from synergy in the simultaneous treatment with both kinds of lamps. In order to identify the mechanism of this synergistic bactericidal action, the form and cause of membrane damage were analyzed. Total reactive oxygen species (ROS) and superoxide generation as well as the activity of ROS defense enzymes then were measured, and the overall mechanism was described as follows. When the 222-nm KrCl excilamp and the 254-nm LP Hg lamp were treated simultaneously, inactivation of ROS defense enzymes by the 222-nm KrCl excilamp induced additional ROS generation following exposure to 254-nm LP Hg lamp (synergistic) generation, resulting in synergistic lipid peroxidation in the cell membrane. As a result, there was a synergistic increase in cell membrane permeability leading to a synergistic bactericidal effect. This identification of the fundamental mechanism of the combined disinfection system of the 222-nm KrCl excilamp and 254-nm LP Hg lamp, which exhibited a synergistic bactericidal effect, can provide important baseline data for further related studies or industrial applications in the future. Contamination of pathogenic microorganisms in water plays an important role in inducing outbreaks of food-borne illness by causing cross-contamination in foods. Thus, proper disinfection of water before use in food production is essential to prevent outbreaks of food-borne illness. As technologies capable of selecting UV radiation wavelengths (such as UV-LEDs and excilamps) have been developed, wavelength combination treatment with UV radiation, which is widely used in water disinfection systems, is actively being studied. In this regard, we have confirmed synergistic bactericidal effects in combination with 222-nm and 254-nm wavelengths and have identified mechanisms for this. This study clearly analyzed the mechanism of synergistic bactericidal effect by wavelength combination treatment, which has not been attempted in other studies. Therefore, it is also expected that these results will play an important role as baseline data for future research on, as well as industrial applications for, the disinfection strategy of effective wavelength combinations.

摘要

本研究旨在探讨 222nmKrCl 准分子灯和 254nm 低压(LP)汞灯联合处理对 O157:H7、鼠伤寒沙门氏菌 subsp. 和 的协同杀菌效果,并确定协同杀菌机制。将病原体消毒的自来水单独或同时用 254nmLP 汞灯或 222nmKrCl 准分子灯处理。总的来说,与单独处理相比,所有病原体在同时使用两种灯的协同处理中都发现了额外的对数单位减少,从而表现出协同作用。为了确定这种协同杀菌作用的机制,分析了膜损伤的形式和原因。然后测量了总活性氧(ROS)和超氧化物的产生以及 ROS 防御酶的活性,并描述了总体机制如下。当 222nmKrCl 准分子灯和 254nmLP 汞灯同时处理时,222nmKrCl 准分子灯对 ROS 防御酶的失活诱导了暴露于 254nmLP 汞灯后 ROS 的额外生成(协同作用),导致细胞膜中协同脂质过氧化作用。结果,细胞膜通透性协同增加,导致协同杀菌作用。这种鉴定 222nmKrCl 准分子灯和 254nmLP 汞灯联合消毒系统协同杀菌作用的基本机制,可以为未来进一步的相关研究或工业应用提供重要的基础数据。水中致病性微生物的污染通过在食品中造成交叉污染而在引起食源性疾病爆发中起着重要作用。因此,在食品生产中使用前对水进行适当消毒对于防止食源性疾病爆发至关重要。随着能够选择紫外线辐射波长的技术(如 UV-LED 和准分子灯)的发展,紫外线辐射的波长组合处理已在广泛用于水消毒系统的领域中得到积极研究。在这方面,我们已经证实了与 222nm 和 254nm 波长的组合的协同杀菌效果,并确定了这种效果的机制。本研究通过波长组合处理明确分析了协同杀菌作用的机制,这在其他研究中尚未尝试过。因此,预计这些结果将作为未来有效波长组合消毒策略的研究和工业应用的基础数据发挥重要作用。

相似文献

3
Increased Resistance of Serovar Typhimurium and O157:H7 to 222-Nanometer Krypton-Chlorine Excilamp Treatment by Acid Adaptation.
Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02221-18. Print 2019 Mar 15.
8
Synergistic effects of sequential light treatment with 222-nm/405-nm and 280-nm/405-nm wavelengths on inactivation of foodborne pathogens.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0065023. doi: 10.1128/aem.00650-23. Epub 2023 Oct 6.

引用本文的文献

3
Reactive oxygen species generated by irradiation with bandpass-filtered 222-nm Far-UVC play an important role in the germicidal mechanism to .
Appl Environ Microbiol. 2025 Feb 19;91(2):e0188624. doi: 10.1128/aem.01886-24. Epub 2025 Jan 31.
5
Wavelength synergistic effects in continuous flow-through water disinfection systems.
Water Res X. 2023 Nov 19;21:100208. doi: 10.1016/j.wroa.2023.100208. eCollection 2023 Dec 1.
6
Acid adaptation increased the resistance of O157:H7 in bok choy ( subsp. ) juice to high-pressure processing.
Appl Environ Microbiol. 2023 Nov 29;89(11):e0060223. doi: 10.1128/aem.00602-23. Epub 2023 Oct 24.
7
Synergistic effects of sequential light treatment with 222-nm/405-nm and 280-nm/405-nm wavelengths on inactivation of foodborne pathogens.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0065023. doi: 10.1128/aem.00650-23. Epub 2023 Oct 6.
8
UV C Light from a Light-Emitting Diode at 275 Nanometers Shortens Wound Healing Time in Bacterium- and Fungus-Infected Skin in Mice.
Microbiol Spectr. 2022 Dec 21;10(6):e0342422. doi: 10.1128/spectrum.03424-22. Epub 2022 Dec 1.
9
Ocular and Facial Far-UVC Doses from Ceiling-Mounted 222 nm Far-UVC Fixtures.
Photochem Photobiol. 2023 Jan;99(1):160-167. doi: 10.1111/php.13671. Epub 2022 Jul 31.
10
Improved Ultraviolet Radiation Film Dosimetry Using OrthoChromic OC-1 Film.
Photochem Photobiol. 2021 May;97(3):498-504. doi: 10.1111/php.13364. Epub 2020 Dec 28.

本文引用的文献

1
Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives.
Compr Rev Food Sci Food Saf. 2016 May;15(3):471-490. doi: 10.1111/1541-4337.12200. Epub 2016 Feb 25.
4
Superoxide Generation and Its Involvement in the Growth of .
Front Microbiol. 2017 Jan 30;8:105. doi: 10.3389/fmicb.2017.00105. eCollection 2017.
6
Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.
Water Res. 2017 Feb 1;109:207-216. doi: 10.1016/j.watres.2016.11.024. Epub 2016 Nov 7.
7
Oxidative stress in E. coli cells upon exposure to heat treatments.
Int J Food Microbiol. 2017 Jan 16;241:198-205. doi: 10.1016/j.ijfoodmicro.2016.10.023. Epub 2016 Oct 18.
8
Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review.
Water Res. 2016 May 1;94:341-349. doi: 10.1016/j.watres.2016.03.003. Epub 2016 Mar 2.
9
Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.
Appl Environ Microbiol. 2015 Sep 18;82(1):11-7. doi: 10.1128/AEM.02092-15. Print 2016 Jan 1.
10
Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for "Green" Bacterial Inactivation under Visible Light.
Environ Sci Technol. 2015 May 19;49(10):6264-73. doi: 10.1021/acs.est.5b00531. Epub 2015 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验