College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Int J Mol Sci. 2022 May 17;23(10):5619. doi: 10.3390/ijms23105619.
Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance () determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. Au-Bre29 contained one extra plasmid but without harboring any additional genes compared to Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified , a folate synthesis gene, in the operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated (in bacteria) or (in mammals). Heterologous expression of , cloned from Au-Bre30, in the arsenic-hypersensitive strain AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).
砷(As)广泛分布于自然环境中,是一种有毒物质,可严重损害活细胞的正常功能。研究赋予砷抗性和代谢功能的遗传决定因素对于修复砷污染环境非常重要。许多生物体,包括细菌,已经开发出各种策略来耐受砷,方法是解毒这种有害元素或利用它来产生能量。越来越多的新的砷抗性()决定因素被鉴定为赋予对不同砷化合物的抗性,并在 操纵子中编码。在金矿开采活动中,由于含金和含砷矿物共存,存在砷迁移的危险。在这项研究中,我们从福建省龙岩市紫金山金矿(海拔 192 米)废水处理场土壤中分离出 8 株金富集菌株。我们在这 8 株菌株中鉴定出两株 菌株 Au-Bre29 和 Au-Bre30,它们对 As(III)的最小抑制浓度(MIC)很高。这两株菌株含有相同的 操纵子,但在亚砷酸盐(As(III))胁迫下分泌额外聚合物物质(EPS)方面存在差异。Au-Bre29 含有一个额外的质粒,但与 Au-Bre30 相比,没有携带任何额外的 基因。我们优化了菌株 Au-Bre29 和 Au-Bre30 的生长条件。Au-Bre30 能够耐受更低的 pH 值和略高的 NaCl 浓度。我们还在这两个菌株的 操纵子中鉴定出 ,一个叶酸合成基因。在大多数生物体中,叶酸合成始于 FolE(GTP-环化水解酶 I)型酶,相应的基因通常在细菌中命名为 (),在哺乳动物中命名为 ()。从 Au-Bre30 中克隆的 基因的异源表达,赋予了对 As(III)、砷酸盐(As(V))、三价罗克斯酮(Rox(III))、五价罗克斯酮(Rox(V))、三价亚锑酸盐(Sb(III))和五价亚锑酸盐(Sb(V))的抗性,表明叶酸生物合成是砷化物毒性的靶点,增加叶酸的产生赋予对含氧阴离子的更高抗性。编码 Acr3 和 ArsH 的基因赋予了对 As(III)、Rox(III)、Sb(III)和 Sb(V)的抗性,而 ArsH 也赋予了对 As(V)的抗性。Acr3 不能赋予对 As(V)和 Rox(V)的抗性,而 ArsH 不能赋予对 Rox(V)的抗性。