Suppr超能文献

利用遥感和环境因素对时空疟疾风险进行建模

Modeling Spatio-temporal Malaria Risk Using Remote Sensing and Environmental Factors.

作者信息

Mazher Muhammad Haris, Iqbal Javed, Mahboob Muhammad Ahsan, Atif Iqra

机构信息

Institute of Geographic Information Systems, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan.

出版信息

Iran J Public Health. 2018 Sep;47(9):1281-1291.

Abstract

BACKGROUND

Remote sensing have been intensively used across many disciplines, however, such information was limited in spatial epidemiology.

METHODS

Two years (2009 & 2010) Landsat TM satellite data was used to develop vegetation, water bodies, air temperature and humidity criterion maps to model malaria risk and its spatiotemporal seasonal variation. The criterion maps were used in weighted overlay analysis to generate final categorized malaria risk map.

RESULTS

Overall, 25%, 68%, 18% and 16% of the total area of Rawalpindi region was categorized as danger zone for Jun 2009, Oct 2009, Jan 2010 and Jun 2010, respectively. The malaria risk reached at its peak during the monsoon season whereas air temperature and relative humidity were the main contributing factors in seasonal variation.

CONCLUSION

Malaria risk maps could be used for prioritizing areas for malaria control measures.

摘要

背景

遥感技术已在许多学科中得到广泛应用,然而,此类信息在空间流行病学中的应用有限。

方法

利用两年(2009年和2010年)的陆地卫星TM卫星数据绘制植被、水体、气温和湿度标准图,以模拟疟疾风险及其时空季节变化。这些标准图用于加权叠加分析,以生成最终的分类疟疾风险图。

结果

总体而言,拉瓦尔品第地区总面积的25%、68%、18%和16%分别在2009年6月、2009年10月、2010年1月和2010年6月被归类为危险区域。疟疾风险在季风季节达到峰值,而气温和相对湿度是季节变化的主要影响因素。

结论

疟疾风险图可用于确定疟疾控制措施的优先区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e458/6174038/b548d0892670/IJPH-47-1281-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验