Suppr超能文献

泰国疟疾传播流行病学的气象、环境遥感与神经网络分析

Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand.

作者信息

Kiang Richard, Adimi Farida, Soika Valerii, Nigro Joseph, Singhasivanon Pratap, Sirichaisinthop Jeeraphat, Leemingsawat Somjai, Apiwathnasorn Chamnarn, Looareesuwan Sornchai

机构信息

NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.

出版信息

Geospat Health. 2006 Nov;1(1):71-84. doi: 10.4081/gh.2006.282.

Abstract

In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world's malaria occurs. Although the Greater Mekong Subregion (GMS), which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak) which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes) to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the mean training accuracy weighted by provincial malaria cases was 73%. Prediction of malaria cases for 2001 using neural networks trained for 1994-2000 gave a weighted accuracy of 53%. Because there was a significant decrease (31%) in the number of malaria cases in the 19 provinces from 2000 to 2001, the networks overestimated malaria transmissions. The decrease in transmission was not due to climatic or environmental changes. Thailand is a country with long borders. Migrant populations from the neighboring countries enlarge the human malaria reservoir because these populations have more limited access to health care. This issue also confounds the complexity of modeling malaria based on meteorological and environmental variables alone. In spite of the relatively low resolution of the data and the impact of migrant populations, we have uncovered a reasonably clear dependency of malaria on meteorological and environmental remote sensing variables. When other contextual determinants do not vary significantly, using neural network analysis along with remote sensing variables to predict malaria endemicity should be feasible.

摘要

在许多疟疾流行地区,疟疾传播大致与雨季相符,雨季为幼虫提供了更为丰富的栖息地。除了降水之外,其他气象和环境因素也可能影响疟疾传播。这些因素可以通过地球观测环境卫星进行遥感监测,并利用季节性气候预测进行估算。近年来,遥感技术作为疟疾流行早期预警工具的应用得到了广泛研究,尤其是在疟疾发病占全球大多数的非洲地区。尽管包括泰国及周边国家在内的大湄公河次区域(GMS)是多重耐药恶性疟原虫疟疾的高发地区,但影响该地区疟疾传播的气象和环境因素尚未得到详细研究。在本研究中,所使用的寄生虫学数据包括泰国公共卫生部汇编的省级月度疟疾流行病学数据。从气候时间序列和卫星测量中获取的降水、温度、相对湿度和植被指数被用作自变量来建立疟疾模型。我们使用神经网络方法(一种人工智能技术)来建立疟疾传播与这些变量之间的依赖关系模型。基于1994 - 1999年的数据,对疟疾流行程度最高的三个省份(北碧府、夜丰颂府和达府)进行神经网络分析,其平均训练准确率为72.8%,平均测试准确率为62.9%。更复杂的神经网络架构虽然训练准确率更高,但测试准确率更低。考虑到报告疟疾病例的不确定性,我们将疟疾病例划分为不同区间(类别)来计算训练准确率。在1994年至2000年期间,对19个疟疾流行程度最高的省份使用相同的神经网络架构,按省级疟疾病例加权后的平均训练准确率为73%。使用针对1994 - 2000年训练的神经网络对2001年的疟疾病例进行预测,加权准确率为53%。由于19个省份的疟疾病例数量在2000年至2001年期间显著下降(31%),该网络高估了疟疾传播情况。传播率的下降并非由于气候或环境变化。泰国是一个边境线漫长国家。来自邻国的流动人口扩大了人类疟疾传染源,因为这些人群获得医疗保健的机会较为有限。这个问题也使得仅基于气象和环境变量对疟疾进行建模的复杂性增加。尽管数据分辨率相对较低且存在流动人口的影响,但我们已经发现疟疾与气象和环境遥感变量之间存在较为明显的依赖关系。当其他背景决定因素变化不显著时,结合神经网络分析和遥感变量来预测疟疾流行情况应该是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验