Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, Oslo, Norway.
Department of Biological Sciences, Proteomics and Mass Spectrometry Unit, University of Oslo, Oslo, Norway.
J Bacteriol. 2018 Dec 7;201(1). doi: 10.1128/JB.00522-18. Print 2019 Jan 1.
The genus includes three major species of importance to human health and disease (, , and ) that express broad-spectrum -linked protein glycosylation (Pgl) systems. The potential for related Pgl systems in other species in the genus, however, remains to be determined. Using a strain of subsp. , a unique tetrasaccharide glycoform consisting of di--acetylbacillosamine and glucose as the first two sugars followed by a rare sugar whose mass spectrometric fragmentation profile was most consistent with di--acetyl hexuronic acid and a -acetylhexosamine at the nonreducing end has been identified. Based on established mechanisms for UDP-di--acetyl hexuronic acid biosynthesis found in other microbes, we searched for genes encoding related pathway components in the subsp. genome. Here, we detail the identification of such genes and the ensuing glycosylation phenotypes engendered by their inactivation. While the findings extend the conservative nature of microbial UDP-di--acetyl hexuronic acid biosynthesis, mutant glycosylation phenotypes reveal unique, relaxed specificities of the glycosyltransferases and oligosaccharyltransferases to incorporate pathway intermediate UDP-sugars into mature glycoforms. Broad-spectrum protein glycosylation (Pgl) systems are well recognized in bacteria and archaea. Knowledge of how these systems relate structurally, biochemically, and evolutionarily to one another and to others associated with microbial surface glycoconjugate expression is still incomplete. Here, we detail reverse genetic efforts toward characterization of protein glycosylation mutants of subsp. that define the biosynthesis of a conserved but relatively rare UDP-sugar precursor. The results show both a significant degree of intra- and transkingdom conservation in the utilization of UDP-di--acetyl-glucuronic acid and singular properties related to the relaxed specificities of the subsp. system.
该属包括三个对人类健康和疾病具有重要意义的主要种( , 和 ),它们表达广谱的蛋白质糖基化(Pgl)系统。然而,其他种属中相关 Pgl 系统的潜力仍有待确定。使用 亚种的一个菌株,鉴定出一种独特的四糖糖型,由二乙酰基-β-乳酰氨基葡萄糖和葡萄糖作为前两个糖,接着是一个稀有糖,其质谱碎裂谱最符合二乙酰基六糖二酸和非还原末端的 -乙酰基己糖胺。基于在其他微生物中发现的 UDP-二乙酰基六糖二酸生物合成的既定机制,我们在 亚种基因组中搜索编码相关途径成分的基因。在这里,我们详细介绍了这些基因的鉴定以及它们失活所产生的糖基化表型。虽然这些发现扩展了微生物 UDP-二乙酰基六糖二酸生物合成的保守性质,但突变体糖基化表型揭示了糖基转移酶和寡糖基转移酶将途径中间 UDP-糖纳入成熟糖型的独特、宽松的特异性。广谱蛋白质糖基化(Pgl)系统在细菌和古细菌中得到了很好的认识。这些系统在结构、生物化学和进化上彼此以及与与微生物表面糖缀合物表达相关的其他系统之间的关系的知识仍然不完整。在这里,我们详细介绍了对 亚种蛋白糖基化突变体进行特征描述的反向遗传学研究,这些突变体定义了保守但相对罕见的 UDP-糖前体的生物合成。结果表明,在利用 UDP-二乙酰基-β-葡糖醛酸方面存在着显著的种内和种间保守性,以及与 亚种系统的宽松特异性相关的独特性质。