Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Biochemistry. 2011 Jun 7;50(22):4936-48. doi: 10.1021/bi2003372. Epub 2011 May 12.
The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues of select periplasmic proteins. Protein glycosylation (pgl) genes have been annotated on the basis of bioinformatics and top-down mass spectrometry analysis of protein modifications in pgl-null strains [Aas, F. E., et al. (2007) Mol. Microbiol. 65, 607-624; Vik, A., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 4447-4452], but relatively little biochemical analysis has been performed to date. In this report, we present the expression, purification, and functional characterization of seven Pgl enzymes. Specifically, the enzymes studied are responsible for synthesis of an uncommon uridine diphosphate (UDP)-sugar (PglD, PglC, and PglB-acetyltransferase domain), glycan assembly (PglB-phospho-glycosyltransferase domain, PglA, PglE, and PglH), and final oligosaccharide transfer (PglO). UDP-2,4-diacetamido-2,4,6-trideoxy-α-d-hexose (DATDH), which is the first sugar in glycan biosynthesis, was produced enzymatically, and the stereochemistry was assigned as uridine diphosphate N'-diacetylbacillosamine (UDP-diNAcBac) by nuclear magnetic resonance characterization. In addition, the substrate specificities of the phospho-glycosyltransferase, glycosyltransferases, and oligosaccharyltransferase (OTase) were analyzed in vitro, and in most cases, these enzymes exhibited strong preferences for the native substrates relative to closely related glycans. In particular, PglO, the O-linked OTase, and PglB(Cj), the N-linked OTase from Campylobacter jejuni, preferred the native N. gonorrhoeae and C. jejuni substrates, respectively. This study represents the first comprehensive biochemical characterization of this important O-linked glycosylation pathway and provides the basis for further investigations of these enzymes as antibacterial targets.
淋病奈瑟菌的 O-连接蛋白糖基化途径负责在十一异戊烯二磷酸上合成复杂的寡糖,并随后将聚糖通过块转移到选定的周质蛋白的丝氨酸残基上。基于生物信息学和对 pgl 缺失菌株中蛋白质修饰的自上而下的质谱分析,已经对蛋白质糖基化 (pgl) 基因进行了注释 [Aas, F. E., 等人。(2007) Mol. Microbiol. 65, 607-624;Vik, A., 等人。(2009)Proc. Natl. Acad. Sci. U.S.A. 106, 4447-4452],但迄今为止相对较少进行生化分析。在本报告中,我们介绍了七种 Pgl 酶的表达、纯化和功能表征。具体而言,研究的酶负责合成一种不常见的尿苷二磷酸 (UDP)-糖 (PglD、PglC 和 PglB-乙酰基转移酶结构域)、聚糖组装 (PglB-磷酸糖基转移酶结构域、PglA、PglE 和 PglH) 和最终寡糖转移 (PglO)。UDP-2,4-二乙酰氨基-2,4,6-三脱氧-α-d-己糖 (DATDH) 是糖生物合成的第一个糖,通过酶促产生,并通过核磁共振谱特征确定其立体化学为尿苷二磷酸 N'-二乙酰基杆菌胺 (UDP-diNAcBac)。此外,还分析了磷酸糖基转移酶、糖基转移酶和寡糖基转移酶 (OTase) 的体外底物特异性,在大多数情况下,这些酶相对于密切相关的聚糖对天然底物表现出强烈的偏好。特别是,O 连接的 OTase PglO 和来自空肠弯曲菌的 N 连接的 OTase PglB(Cj) 分别优先选择天然的淋病奈瑟菌和空肠弯曲菌底物。这项研究代表了对这一重要的 O-连接糖基化途径的首次全面生化表征,并为进一步研究这些酶作为抗菌靶标提供了基础。