Suppr超能文献

在布罗德曼 32 区和 21 区的光学相干显微镜和尼氏染色组织学中神经元的共定位。

Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann's area 32 and area 21.

机构信息

Department of Radiology, Athinoula A Martinos Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.

C.S. Kubik Laboratory for Neuropathology, Pathology Service, MGH, 55 Fruit St., Boston, MA, 02115, USA.

出版信息

Brain Struct Funct. 2019 Jan;224(1):351-362. doi: 10.1007/s00429-018-1777-z. Epub 2018 Oct 17.

Abstract

Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 µm) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer II. In the current method-oriented study, we aimed to determine the colocalization success rate between OCM and Nissl in other brain cortical areas with different laminar arrangements and cell packing density. We focused on two additional cortical areas: medial prefrontal, pre-genual Brodmann area (BA) 32 and lateral temporal BA 21. We present the data as colocalization matrices and as quantitative percentages. The overall average colocalization in OCM compared to Nissl was 67% for BA 32 (47% for Nissl colocalization) and 60% for BA 21 (52% for Nissl colocalization), but with a large variability across cases and layers. One source of variability and confounds could be ascribed to an obscuring effect from large and dense intracortical fiber bundles. Other technical challenges, including obstacles inherent to human brain tissue, are discussed. Despite limitations, OCM is a promising semi-high throughput tool for demonstrating detail at the neuronal level, and, with further development, has distinct potential for the automatic acquisition of large databases as are required for the human brain.

摘要

光学相干断层扫描是一种利用背向散射光突出固有结构的光学技术,当应用于脑组织时,它可以分辨皮质层和纤维束。光学相干显微镜(OCM)具有更高的分辨率(即 1.25 µm),能够检测神经元。在之前的报告中,我们比较了 OCM 获得的神经元图像与内嗅皮层 II 层中传统尼氏染色组织学的对应关系。在当前面向方法的研究中,我们旨在确定 OCM 与尼氏染色在具有不同层状排列和细胞包装密度的其他大脑皮质区域中的共定位成功率。我们关注两个额外的皮质区域:内侧前额叶、前颌下 Brodmann 区(BA)32 和外侧颞叶 BA21。我们将数据呈现为共定位矩阵和定量百分比。与尼氏染色相比,OCM 的总体平均共定位率为 BA32 的 67%(尼氏染色共定位的 47%)和 BA21 的 60%(尼氏染色共定位的 52%),但病例和层之间存在很大的可变性。可变性和混杂因素的一个来源可以归因于大而密集的皮质内纤维束的遮挡效应。其他技术挑战,包括人脑组织固有的障碍,也进行了讨论。尽管存在局限性,但 OCM 是一种很有前途的半高通量工具,可用于展示神经元水平的细节,并且随着进一步的发展,它具有独特的潜力,可以自动获取大型数据库,这是人类大脑所必需的。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验