a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA.
RNA Biol. 2019 Sep;16(9):1077-1085. doi: 10.1080/15476286.2018.1536594. Epub 2018 Oct 29.
Riboswitches are dynamic RNA motifs that are mostly embedded in the 5'-untranslated regions of bacterial mRNAs, where they regulate gene expression transcriptionally or translationally by undergoing conformational changes upon binding of a small metabolite or ion. Due to the small size of typical ligands, relatively little free energy is available from ligand binding to overcome the often high energetic barrier of reshaping RNA structure. Instead, most riboswitches appear to take advantage of the directional and hierarchical folding of RNA by employing the ligand as a structural 'linchpin' to adjust the kinetic partitioning between alternate folds. In this model, even small, local structural and kinetic effects of ligand binding can cascade into global RNA conformational changes affecting gene expression. Single-molecule (SM) microscopy tools are uniquely suited to study such kinetically controlled RNA folding since they avoid the ensemble averaging of bulk techniques that loses sight of unsynchronized, transient, and/or multi-state kinetic behavior. This review summarizes how SM methods have begun to unravel riboswitch-mediated gene regulation.
核糖开关是动态的 RNA 基序,主要嵌入细菌 mRNA 的 5'-非翻译区,通过结合小分子代谢物或离子后发生构象变化,从而在转录或翻译水平上调节基因表达。由于典型配体的体积较小,配体结合产生的自由能相对较少,不足以克服 RNA 结构重排的高能量障碍。相反,大多数核糖开关似乎利用 RNA 的定向和分层折叠,通过将配体用作结构“销子”来调整折叠之间的动力学分配。在这种模型中,即使是配体结合的微小、局部结构和动力学效应也可以级联成影响基因表达的全局 RNA 构象变化。单分子 (SM) 显微镜工具非常适合研究这种动力学控制的 RNA 折叠,因为它们避免了批量技术的整体平均化,批量技术会忽略未同步、瞬态和/或多态动力学行为。这篇综述总结了 SM 方法如何开始揭示核糖开关介导的基因调控。