Suppr超能文献

现状:机器学习在脑胶质瘤成像中的应用。

State of the Art: Machine Learning Applications in Glioma Imaging.

机构信息

1 Department of Radiology, New York University Langone Medical Center, 660 1st Ave, Rm 336, New York, NY 10016.

2 Population Health Department, NYU Langone Medical Center, New York, NY.

出版信息

AJR Am J Roentgenol. 2019 Jan;212(1):26-37. doi: 10.2214/AJR.18.20218. Epub 2018 Oct 17.

Abstract

OBJECTIVE

Machine learning has recently gained considerable attention because of promising results for a wide range of radiology applications. Here we review recent work using machine learning in brain tumor imaging, specifically segmentation and MRI radiomics of gliomas.

CONCLUSION

We discuss available resources, state-of-the-art segmentation methods, and machine learning radiomics for glioma. We highlight the challenges of these techniques as well as the future potential in clinical diagnostics, prognostics, and decision making.

摘要

目的

由于在广泛的放射学应用中取得了有希望的结果,机器学习最近受到了相当多的关注。在这里,我们回顾了最近在脑肿瘤成像中使用机器学习的工作,特别是脑胶质瘤的分割和 MRI 放射组学。

结论

我们讨论了现有的资源、最先进的分割方法以及脑胶质瘤的机器学习放射组学。我们强调了这些技术的挑战以及它们在临床诊断、预后和决策制定方面的未来潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验