Suppr超能文献

一种简约的软件传感器,用于估算牛个体甲烷排放的动态模式。

A parsimonious software sensor for estimating the individual dynamic pattern of methane emissions from cattle.

机构信息

1UMR Modélisation Systémique Appliquée aux Ruminants,INRA,AgroParisTech,Université Paris-Saclay,75005Paris,France.

2Universidad de Antioquia - UdeA,Facultad de Ciencias Agrarias,Grupo de Investigación en Ciencias Agrarias - GRICA,Ciudadela de Robledo,Carrera 75N° 65·87,Medellín,Colombia.

出版信息

Animal. 2019 Jun;13(6):1180-1187. doi: 10.1017/S1751731118002550. Epub 2018 Oct 18.

Abstract

Large efforts have been deployed in developing methods to estimate methane emissions from cattle. For large scale applications, accurate and inexpensive methane predictors are required. Within a livestock precision farming context, the objective of this work was to integrate real-time data on animal feeding behaviour with an in silico model for predicting the individual dynamic pattern of methane emission in cattle. The integration of real-time data with a mathematical model to predict variables that are not directly measured constitutes a software sensor. We developed a dynamic parsimonious grey-box model that uses as predictor variables either dry matter intake (DMI) or the intake time (IT). The model is described by ordinary differential equations.Model building was supported by experimental data of methane emissions from respiration chambers. The data set comes from a study with finishing beef steers (cross-bred Charolais and purebred Luing finishing). Dry matter intake and IT were recorded using feed bins. For research purposes, in this work, our software sensor operated off-line. That is, the predictor variables (DMI, IT) were extracted from the recorded data (rather than from an on-line sensor). A total of 37 individual dynamic patterns of methane production were analyzed. Model performance was assessed by concordance analysis between the predicted methane output and the methane measured in respiration chambers. The model predictors DMI and IT performed similarly with a Lin's concordance correlation coefficient (CCC) of 0.78 on average. When predicting the daily methane production, the CCC was 0.99 for both DMI and IT predictors. Consequently, on the basis of concordance analysis, our model performs very well compared with reported literature results for methane proxies and predictive models. As IT measurements are easier to obtain than DMI measurements, this study suggests that a software sensor that integrates our in silico model with a real-time sensor providing accurate IT measurements is a viable solution for predicting methane output in a large scale context.

摘要

已经投入了大量的努力来开发估算牛甲烷排放量的方法。对于大规模应用,需要准确且廉价的甲烷预测器。在畜牧业精准农业的背景下,这项工作的目的是将动物饲养行为的实时数据与用于预测牛甲烷排放个体动态模式的计算机模型相结合。将实时数据与用于预测无法直接测量的变量的数学模型相结合构成软件传感器。我们开发了一种动态简约的灰箱模型,该模型使用干物质采食量(DMI)或采食时间(IT)作为预测变量。该模型由常微分方程描述。模型构建得到了呼吸室甲烷排放实验数据的支持。该数据集来自育肥肉牛(杂交夏洛来牛和纯种卢因牛)的研究。使用饲料箱记录干物质采食量和 IT。出于研究目的,在这项工作中,我们的软件传感器离线运行。也就是说,预测变量(DMI、IT)是从记录的数据中提取的(而不是从在线传感器中提取的)。总共分析了 37 个个体甲烷生成的动态模式。通过预测甲烷输出与呼吸室测量的甲烷之间的一致性分析来评估模型性能。模型预测因子 DMI 和 IT 的表现相似,平均林氏一致性相关系数(CCC)为 0.78。当预测日甲烷产量时,DMI 和 IT 预测因子的 CCC 均为 0.99。因此,根据一致性分析,与甲烷代理和预测模型的报告文献结果相比,我们的模型表现非常出色。由于 IT 测量比 DMI 测量更容易获得,因此本研究表明,将我们的计算机模型与提供准确 IT 测量的实时传感器集成的软件传感器是在大规模背景下预测甲烷排放的可行解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验