Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
Frankfurt Institute for Advanced Studies and Department of Computer Science and Mathematics, Goethe University, Frankfurt am Main, Germany.
Nature. 2018 Oct;562(7727):361-366. doi: 10.1038/s41586-018-0591-3. Epub 2018 Oct 17.
Few animals provide a readout that is as objective of their perceptual state as camouflaging cephalopods. Their skin display system includes an extensive array of pigment cells (chromatophores), each expandable by radial muscles controlled by motor neurons. If one could track the individual expansion states of the chromatophores, one would obtain a quantitative description-and potentially even a neural description by proxy-of the perceptual state of the animal in real time. Here we present the use of computational and analytical methods to achieve this in behaving animals, quantifying the states of tens of thousands of chromatophores at sixty frames per second, at single-cell resolution, and over weeks. We infer a statistical hierarchy of motor control, reveal an underlying low-dimensional structure to pattern dynamics and uncover rules that govern the development of skin patterns. This approach provides an objective description of complex perceptual behaviour, and a powerful means to uncover the organizational principles that underlie the function, dynamics and morphogenesis of neural systems.
几乎没有哪种动物能像伪装头足类动物那样提供对其感知状态如此客观的指示。它们的皮肤显示系统包括一系列广泛的色素细胞(色素细胞),每个色素细胞都可以通过由运动神经元控制的径向肌肉来扩张。如果能够跟踪色素细胞的个体扩张状态,就可以实时获得动物感知状态的定量描述——甚至可以通过代理获得神经描述。在这里,我们展示了在行为动物中使用计算和分析方法来实现这一目标的方法,以每秒六十帧的速度、单细胞分辨率和数周的时间来量化数万个色素细胞的状态。我们推断出运动控制的统计层次结构,揭示了模式动态的潜在低维结构,并揭示了控制皮肤模式发育的规则。这种方法提供了对复杂感知行为的客观描述,是揭示神经系统功能、动态和形态发生的组织原则的有力手段。