Qu Shangda, Yu Qianbo, Jiang Chengpeng, Zou Taoyu, Xu Honghuan, Zhang Longlong, Tao Mengze, Zhu Qingshan, Zhang Song, Geng Cong, Yuan Mingjian, Noh Yong-Young, Xu Wentao
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
Shenzhen Research Institute of Nankai University, Shenzhen 518000, China.
Sci Adv. 2025 May 16;11(20):eadu3576. doi: 10.1126/sciadv.adu3576.
Space exploration, particularly in the extreme space environment, has gained increasing attention. Networked robots capable of real-time environmental perception and autonomous collaboration offer a promising alternative for executing complex precision tasks. Consequently, achieving local reliable communication and preparing irradiation-tolerant materials are essential. Here, we demonstrate a cephalopod-inspired neuromorphic loop that enables chromaticity communication between individual near-sensor processing units. A programmatically aligned aluminum zinc oxide nanofiber array was fabricated and used as conductive channels that can withstand prolonged (10 seconds) and high-dose (5 × 10 ions per square centimeter) proton irradiation. The neuromorphic loop, with capabilities in environmental perception, event-driven processing, adaptive learning, and chromaticity communication, enables the self-driven collaboration of robotic hands based on tactile feedback and ensures reliable mobile links for drone flight control. This work pioneers a direction in neuromorphic visible light communication and marks important progress in the field of biomimetic intelligence.
太空探索,尤其是在极端太空环境中的探索,已受到越来越多的关注。能够进行实时环境感知和自主协作的联网机器人为执行复杂的精密任务提供了一种很有前景的选择。因此,实现局部可靠通信和制备耐辐照材料至关重要。在此,我们展示了一种受头足类动物启发的神经形态回路,它能够在各个近传感器处理单元之间实现色度通信。制备了一种通过编程排列的铝锌氧化物纳米纤维阵列,并将其用作能够承受长时间(约10秒)和高剂量(约每平方厘米5×10个离子)质子辐照的导电通道。该神经形态回路具有环境感知、事件驱动处理、自适应学习和色度通信能力,能够基于触觉反馈实现机器人手的自主协作,并确保无人机飞行控制的可靠移动链路。这项工作开创了神经形态可见光通信的一个方向,并标志着仿生智能领域的重要进展。