Suppr超能文献

基于各种机器学习技术的心电图信号分类。

ECG Signal Classification Using Various Machine Learning Techniques.

机构信息

Satyabama Institute of Science and Technology, Chennai, India.

Vidya Jyothi Institute of Technology, Hyderabad, Telangana, 500075, India.

出版信息

J Med Syst. 2018 Oct 18;42(12):241. doi: 10.1007/s10916-018-1083-6.

Abstract

Electrocardiogram (ECG) signal is a process that records the heart rate by using electrodes and detects small electrical changes for each heat rate. It is used to investigate some types of abnormal heart function including arrhythmias and conduction disturbance. In this paper the proposed method is used to classify the ECG signal by using classification technique. First the Input signal is preprocessed by using filtering method such as low pass, high pass and butter worth filter to remove the high frequency noise. Butter worth filter is to remove the excess noise in the signal. After preprocessing peak points are detected by using peak detection algorithm and extract the features for the signal are extracted using statistical parameters. Finally, extracted features are classified by using SVM, Adaboost, ANN and Naïve Bayes classifier to classify the ECG signal database into normal or abnormal ECG signal. Experimental result shows that the accuracy of the SVM, Adaboost, ANN and Naïve Bayes classifier is 87.5%, 93%, 94 and 99.7%. Compared to other classifier naïve bayes classifier accuracy is high.

摘要

心电图(ECG)信号是通过电极记录心率并检测每次心跳的微小电变化的过程。它用于研究包括心律失常和传导障碍在内的某些类型的异常心脏功能。在本文中,所提出的方法用于通过分类技术对心电图信号进行分类。首先,通过使用滤波方法(如低通、高通和巴特沃斯滤波器)对输入信号进行预处理,以去除高频噪声。巴特沃斯滤波器用于去除信号中的多余噪声。预处理后,使用峰检测算法检测峰值,并使用统计参数提取信号的特征。最后,使用 SVM、Adaboost、ANN 和朴素贝叶斯分类器对提取的特征进行分类,将心电图信号数据库分为正常或异常心电图信号。实验结果表明,SVM、Adaboost、ANN 和朴素贝叶斯分类器的准确率分别为 87.5%、93%、94%和 99.7%。与其他分类器相比,朴素贝叶斯分类器的准确率更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验