Suppr超能文献

心脏标签网络:一种使用模糊方法进行心电图异常检测的不确定性估计

CardioLabelNet: An uncertainty estimation using fuzzy for abnormalities detection in ECG.

作者信息

Mishra Jyoti, Tiwari Mahendra

机构信息

Department of Electronics and Communication University of Allahabad Prayagraj India.

出版信息

Health Care Sci. 2023 Jan 31;2(1):60-74. doi: 10.1002/hcs2.31. eCollection 2023 Feb.

Abstract

Electrocardiography (ECG) abnormalities are evaluated through several automatic detection methods. Primarily, real-world ECG data are digital signals those are stored in the form of images in hospitals. Also, the existing automated detection technique eliminates the cardiac pattern that is abnormal and it is difficult to multiple abnormalities at some instances. To address those issues in this paper conventional ECG image automated techniques CardioLabelNet model is proposed. The proposed model incorporates two stages for image abnormality detection. At first fuzzy membership is performed in the image for computation of uncertainty. In second stage, classification is performed for computation of abnormal activity. The proposed CardioLabelNet collect ECG image data set for the uncertainty estimation while taking the account of various image classes which includes the global and local entropy of image pixels. For each waveform, uncertainties are calculated on the basis of global entropy. The computation of uncertainty in the images is performed with the fuzzy membership function. The spatial likelihood estimation of a fuzzy weighted membership function is used to calculate local entropy. Upon completion of fuzzification, classification is performed for the detection of normal and abnormal patterns in the ECG signal images. Through integration of stacked architecture model classification is performed for ECG images. The proffered algorithm performance is calculated in terms of accuracy for segmentation, Dice similarity coefficient, and partition entropy. Additionally, classification parameters accuracy sensitivity, specificity, and AUC are evaluated. The proposed approach outperforms the existing methodology, according to the results of a comparative analysis.

摘要

心电图(ECG)异常通过多种自动检测方法进行评估。首先,现实世界中的心电图数据是数字信号,这些信号在医院中以图像形式存储。此外,现有的自动检测技术会消除异常的心脏模式,并且在某些情况下难以检测多种异常。为了解决这些问题,本文提出了传统心电图图像自动技术CardioLabelNet模型。所提出的模型包括两个阶段用于图像异常检测。首先,在图像中执行模糊隶属度计算不确定性。在第二阶段,进行分类以计算异常活动。所提出的CardioLabelNet收集心电图图像数据集用于不确定性估计,同时考虑各种图像类别,包括图像像素的全局和局部熵。对于每个波形,基于全局熵计算不确定性。图像中不确定性的计算使用模糊隶属度函数进行。模糊加权隶属度函数的空间似然估计用于计算局部熵。在模糊化完成后,对心电图信号图像中的正常和异常模式进行分类检测。通过集成堆叠架构模型对心电图图像进行分类。根据分割精度、骰子相似系数和分区熵计算所提出算法的性能。此外,评估分类参数准确性、敏感性、特异性和AUC。根据比较分析结果,所提出的方法优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1451/11080742/2e2ac0c2cb8a/HCS2-2-60-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验