Suppr超能文献

使用具有超参数调整方法的人工智能模型从心律失常心电图信号中检测心血管疾病。

Cardiovascular disease detection from cardiac arrhythmia ECG signals using artificial intelligence models with hyperparameters tuning methodologies.

作者信息

Manivannan Gowri Shankar, Rajaguru Harikumar, S Rajanna, Talawar Satish V

机构信息

Malnad College of Engineering, Hassan, Karnataka, India.

Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India.

出版信息

Heliyon. 2024 Aug 22;10(17):e36751. doi: 10.1016/j.heliyon.2024.e36751. eCollection 2024 Sep 15.

Abstract

Cardiovascular disease (CVD) is connected with irregular cardiac electrical activity, which can be seen in ECG alterations. Due to its convenience and non-invasive aspect, the ECG is routinely exploited to identify different arrhythmias and automatic ECG recognition is needed immediately. In this paper, enhancement for the detection of CVDs such as Ventricular Tachycardia (VT), Premature Ventricular Contraction (PVC) and ST Change (ST) arrhythmia using different dimensionality reduction techniques and multiple classifiers are presented. Three-dimensionality reduction methods, such as Local Linear Embedding (LLE), Diffusion Maps (DM), and Laplacian Eigen (LE), are employed. The dimensionally reduced ECG samples are further feature selected with Cuckoo Search (CS) and Harmonic Search Optimization (HSO) algorithms. A publicly available MIT-BIH (Physionet) - VT database, PVC database, ST Change database and NSR database were used in this work. The cardiac vascular disturbances are classified by using seven classifiers such as Gaussian Mixture Model (GMM), Expectation Maximization (EM), Non-linear Regression (NLR), Logistic Regression (LR), Bayesian Linear Discriminant Analysis (BDLC), Detrended Fluctuation Analysis (Detrended FA), and Firefly. For different classes, the average overall accuracy of the classification techniques is 55.65 % when without CS and HSO feature selection, 64.36 % when CS feature selection is used, and 75.39 % when HSO feature selection is used. Also, to improve the performance of classifiers, the hyperparameters of four classifiers (GMM, EM, BDLC and Firefly) are tuned with the Adam and Grid Search Optimization (GSO) approaches. The average accuracy of classification for the CS feature-based classifiers that used GSO and Adam hyperparameter tuning was 79.92 % and 85.78 %, respectively. The average accuracy of classification for the HSO feature-based classifiers that used GSO and Adam hyperparameter tuning was 86.87 % and 93.77 %, respectively. The performance of the classifier is analyzed based on the accuracy parameter for both with and without feature selection methods and with hyperparameter tuning techniques. In the case of ST vs. NSR, a higher accuracy of 98.92 % is achieved for the LLE dimensionality reduction with HSO feature selection for the GMM classifier with Adam's hyperparameter tuning approach. The GMM classifier with the Adam hyperparameter tuning approach with 98.92 % accuracy in detecting ST vs. NSR cardiac disease is outperforming all other classifiers and methodologies.

摘要

心血管疾病(CVD)与心脏电活动异常有关,这在心电图改变中可见。由于其便利性和非侵入性,心电图被常规用于识别不同的心律失常,因此迫切需要自动心电图识别技术。本文提出了利用不同的降维技术和多个分类器来增强对诸如室性心动过速(VT)、室性早搏(PVC)和ST段改变(ST)等心血管疾病的检测。采用了三种降维方法,即局部线性嵌入(LLE)、扩散映射(DM)和拉普拉斯特征映射(LE)。通过布谷鸟搜索(CS)算法和和声搜索优化(HSO)算法对降维后的心电图样本进一步进行特征选择。本研究使用了公开可用的麻省理工学院 - 贝斯以色列女执事医疗中心(Physionet)的VT数据库、PVC数据库、ST段改变数据库和正常窦性心律(NSR)数据库。利用高斯混合模型(GMM)、期望最大化(EM)、非线性回归(NLR)、逻辑回归(LR)、贝叶斯线性判别分析(BDLC)、去趋势波动分析(Detrended FA)和萤火虫算法等七种分类器对心血管紊乱进行分类。对于不同类别,在不使用CS和HSO特征选择时,分类技术的平均总体准确率为55.65%;使用CS特征选择时,平均总体准确率为64.36%;使用HSO特征选择时,平均总体准确率为75.39%。此外,为了提高分类器的性能,使用Adam和网格搜索优化(GSO)方法对四个分类器(GMM、EM、BDLC和萤火虫算法)的超参数进行调整。使用GSO和Adam超参数调整的基于CS特征的分类器的平均分类准确率分别为79.92%和85.78%。使用GSO和Adam超参数调整的基于HSO特征的分类器的平均分类准确率分别为86.87%和93.77%。基于有无特征选择方法以及超参数调整技术的准确率参数对分类器的性能进行分析。在ST段改变与正常窦性心律的对比中,对于采用Adam超参数调整方法的GMM分类器,使用HSO特征选择的LLE降维方法实现了98.92%的更高准确率。采用Adam超参数调整方法且在检测ST段改变与正常窦性心律的心血管疾病时准确率达到98.92%的GMM分类器优于所有其他分类器和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8840/11388751/c9704790ad12/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验