CRACS and INESC-TEC, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre, 1021, 4169-007 Porto, Portugal.
PLoS One. 2018 Oct 18;13(10):e0205497. doi: 10.1371/journal.pone.0205497. eCollection 2018.
Given a set of temporal networks, from different domains and with different sizes, how can we compare them? Can we identify evolutionary patterns that are both (i) characteristic and (ii) meaningful? We address these challenges by introducing a novel temporal and topological network fingerprint named Graphlet-orbit Transitions (GoT). We demonstrate that GoT provides very rich and interpretable network characterizations. Our work puts forward an extension of graphlets and uses the notion of orbits to encapsulate the roles of nodes in each subgraph. We build a transition matrix that keeps track of the temporal trajectory of nodes in terms of their orbits, therefore describing their evolution. We also introduce a metric (OTA) to compare two networks when considering these matrices. Our experiments show that networks representing similar systems have characteristic orbit transitions. GoT correctly groups synthetic networks pertaining to well-known graph models more accurately than competing static and dynamic state-of-the-art approaches by over 30%. Furthermore, our tests on real-world networks show that GoT produces highly interpretable results, which we use to provide insight into characteristic orbit transitions.
给定一组来自不同领域和不同大小的时间网络,我们如何对它们进行比较?我们能否识别出既具有(i)特征又具有(ii)意义的进化模式?我们通过引入一种名为图元轨道转换(Graphlet-orbit Transitions,GoT)的新的时间和拓扑网络指纹来解决这些挑战。我们证明了 GoT 提供了非常丰富和可解释的网络特征描述。我们的工作扩展了图元的概念,并使用轨道的概念来封装每个子图中节点的作用。我们构建了一个转换矩阵,根据节点的轨道跟踪节点的时间轨迹,从而描述它们的演化。我们还引入了一个度量标准(OTA),以便在考虑这些矩阵时比较两个网络。我们的实验表明,代表相似系统的网络具有特征性的轨道转换。GoT 比竞争的静态和动态最先进方法更准确地将属于知名图模型的合成网络分组,准确率提高了 30%以上。此外,我们对真实网络的测试表明,GoT 产生了高度可解释的结果,我们利用这些结果深入了解特征性轨道转换。