Suppr超能文献

多层序列网络分析提高蛋白质 3D 结构分类。

Multi-layer sequential network analysis improves protein 3D structural classification.

机构信息

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, USA.

Center for Data and Computing in Natural Sciences (CDCS), Institute for Computational Systems Biology, Universität Hamburg, Hamburg, Germany.

出版信息

Proteins. 2022 Sep;90(9):1721-1731. doi: 10.1002/prot.26349. Epub 2022 May 2.

Abstract

Protein structural classification (PSC) is a supervised problem of assigning proteins into pre-defined structural (e.g., CATH or SCOPe) classes based on the proteins' sequence or 3D structural features. We recently proposed PSC approaches that model protein 3D structures as protein structure networks (PSNs) and analyze PSN-based protein features, which performed better than or comparable to state-of-the-art sequence or other 3D structure-based PSC approaches. However, existing PSN-based PSC approaches model the whole 3D structure of a protein as a static (i.e., single-layer) PSN. Because folding of a protein is a dynamic process, where some parts (i.e., sub-structures) of a protein fold before others, modeling the 3D structure of a protein as a PSN that captures the sub-structures might further help improve the existing PSC performance. Here, we propose to model 3D structures of proteins as multi-layer sequential PSNs that approximate 3D sub-structures of proteins, with the hypothesis that this will improve upon the current state-of-the-art PSC approaches that are based on single-layer PSNs (and thus upon the existing state-of-the-art sequence and other 3D structural approaches). Indeed, we confirm this on 72 datasets spanning ~44 000 CATH and SCOPe protein domains.

摘要

蛋白质结构分类(PSC)是一个监督问题,根据蛋白质的序列或 3D 结构特征,将蛋白质分配到预先定义的结构(例如 CATH 或 SCOPe)类别中。我们最近提出了一些 PSC 方法,这些方法将蛋白质 3D 结构建模为蛋白质结构网络(PSN),并分析基于 PSN 的蛋白质特征,这些方法的性能优于或可与最新的序列或其他基于 3D 结构的 PSC 方法相媲美。然而,现有的基于 PSN 的 PSC 方法将蛋白质的整个 3D 结构建模为静态(即单层)PSN。由于蛋白质的折叠是一个动态的过程,其中蛋白质的一些部分(即亚结构)先折叠,因此将蛋白质的 3D 结构建模为捕获亚结构的 PSN 可能会进一步提高现有 PSC 的性能。在这里,我们提出将蛋白质的 3D 结构建模为多层顺序 PSN,这些 PSN 近似于蛋白质的 3D 亚结构,假设这将改进基于单层 PSN 的最新 PSC 方法(因此也改进了现有的基于序列和其他 3D 结构的方法)。实际上,我们在跨越约 44000 个 CATH 和 SCOPe 蛋白质结构域的 72 个数据集上验证了这一点。

相似文献

2
Network-based protein structural classification.基于网络的蛋白质结构分类。
R Soc Open Sci. 2020 Jun 3;7(6):191461. doi: 10.1098/rsos.191461. eCollection 2020 Jun.
6
Structural Class Classification of 3D Protein Structure Based on Multi-View 2D Images.基于多视角 2D 图像的 3D 蛋白质结构的结构分类。
IEEE/ACM Trans Comput Biol Bioinform. 2018 Jan-Feb;15(1):286-299. doi: 10.1109/TCBB.2016.2603987. Epub 2016 Aug 29.

本文引用的文献

2
Effect of Protein Structure on Evolution of Cotranslational Folding.蛋白质结构对共翻译折叠进化的影响。
Biophys J. 2020 Sep 15;119(6):1123-1134. doi: 10.1016/j.bpj.2020.06.037. Epub 2020 Aug 12.
3
Network-based protein structural classification.基于网络的蛋白质结构分类。
R Soc Open Sci. 2020 Jun 3;7(6):191461. doi: 10.1098/rsos.191461. eCollection 2020 Jun.
4
Network analysis of synonymous codon usage.同义密码子使用的网络分析。
Bioinformatics. 2020 Dec 8;36(19):4876-4884. doi: 10.1093/bioinformatics/btaa603.
6
Temporal network alignment via GoT-WAVE.通过 GoT-WAVE 进行时变网络对齐。
Bioinformatics. 2019 Sep 15;35(18):3527-3529. doi: 10.1093/bioinformatics/btz119.
9
Unraveling co-translational protein folding: Concepts and methods.解析共翻译折叠蛋白质:概念与方法。
Methods. 2018 Mar 15;137:71-81. doi: 10.1016/j.ymeth.2017.11.007. Epub 2017 Dec 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验