Battery and Electrochemistry Laboratory, Institute of Nanotechnology , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.
BASF SE , Carl-Bosch-Straße 38 , 67056 Ludwigshafen , Germany.
ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38892-38899. doi: 10.1021/acsami.8b13158. Epub 2018 Oct 31.
Gas formation caused by parasitic side reactions is one of the fundamental concerns in state-of-the-art lithium-ion batteries because gas bubbles might block local parts of the electrode surface, hindering lithium transport and leading to inhomogeneous current distributions. Here, we elucidate on the origin of CO, which is the dominant gaseous species associated with the layered lithium nickel cobalt manganese oxide (NCM) cathode, by implementing isotope labeling and electrolyte substitution in differential electrochemical mass spectrometry-differential electrochemical infrared spectroscopy measurements. LiCO on the NCM surface was successfully labeled with C via a process that involves its removal followed by intentional growth. In situ gas analytics on such NCM samples with C-labeled LiCO clearly indicate that LiCO decomposition contributes to CO evolution, especially during the first charge. At the same time, the greater contribution of electrolyte decomposition was indicated by the large amount of CO observed. Employment of butyronitrile as the electrolyte solvent in further measurements helped determine that the majority of electrolyte decomposition occurs via a reaction that involves the lattice oxygen of NCM.
气体的形成是寄生副反应引起的,在最先进的锂离子电池中是一个基本的问题,因为气泡可能会阻塞电极表面的局部区域,阻碍锂离子的传输,并导致电流分布不均匀。在这里,我们通过在差分电化学质谱-差分电化学红外光谱测量中实施同位素标记和电解液替代,阐明了与层状锂镍钴锰氧化物(NCM)正极相关的主要气态物质 CO 的起源。通过涉及去除和故意生长的过程,成功地用 C 标记了 NCM 表面上的 LiCO。对具有 LiCO 标记的 NCM 样品的原位气体分析清楚地表明,LiCO 的分解有助于 CO 的释放,尤其是在第一次充电时。同时,大量观察到的 CO 表明电解质分解的贡献更大。在进一步的测量中使用丁腈作为电解液溶剂有助于确定大多数的电解质分解是通过涉及 NCM 晶格氧的反应发生的。