Suppr超能文献

用于锂离子电池的复合LiNiMnCoO电极上AlO原子层沉积的功效。

Efficacy of atomic layer deposition of AlO on composite LiNiMnCoO electrode for Li-ion batteries.

作者信息

Huang Heran, Qiao Linna, Zhou Hui, Tang Yalun, Wahila Matthew J, Liu Haodong, Liu Ping, Zhou Guangwen, Smeu Manuel, Liu Hao

机构信息

Materials Science and Engineering, Binghamton University, Binghamton, NY, 13902-6000, USA.

Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

出版信息

Sci Rep. 2024 Aug 6;14(1):18180. doi: 10.1038/s41598-024-69330-6.

Abstract

LiNiMnCoO (NMC811) is a popular cathode material for Li-ion batteries, yet degradation and side reactions at the cathode-electrolyte interface pose significant challenges to their long-term cycling stability. Coating LiNiMnCoO (NMC) with refractory materials has been widely used to improve the stability of the cathode-electrolyte interface, but mixed results have been reported for AlO coatings of the Ni-rich NMC811 materials. To elucidate the role and effect of the AlO coating, we have coated commercial-grade NMC811 electrodes with AlO by the atomic layer deposition (ALD) technique. Through a systematic investigation of the long-term cycling stability at different upper cutoff voltages, the stability against ambient storage, the rate capability, and the charger transfer kinetics, our results show no significant differences between the AlO-coated and the bare (uncoated) electrodes. This highlights the contentious role of AlO coating on Ni-rich NMC cathodes and calls into question the benefits of coating on commercial-grade electrodes.

摘要

锂镍锰钴氧化物(NMC811)是一种广受欢迎的锂离子电池正极材料,然而,正极-电解质界面处的降解和副反应对其长期循环稳定性构成了重大挑战。用难熔材料包覆锂镍锰钴氧化物(NMC)已被广泛用于提高正极-电解质界面的稳定性,但对于富镍NMC811材料的AlO包覆,报道的结果不一。为了阐明AlO包覆的作用和效果,我们通过原子层沉积(ALD)技术在商业级NMC811电极上包覆了AlO。通过对不同上限截止电压下的长期循环稳定性、抗环境储存稳定性、倍率性能和电荷转移动力学进行系统研究,我们的结果表明,AlO包覆电极和裸(未包覆)电极之间没有显著差异。这突出了AlO包覆在富镍NMC正极上的争议性作用,并对商业级电极包覆的益处提出了质疑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0a/11303531/3c29df8924c1/41598_2024_69330_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验