Shi Xiaolei, Wu Angyin, Liu Weidi, Moshwan Raza, Wang Yuan, Chen Zhi-Gang, Zou Jin
Materials Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia.
Centre for Future Materials , University of Southern Queensland , Springfield , QLD 4300 , Australia.
ACS Nano. 2018 Nov 27;12(11):11417-11425. doi: 10.1021/acsnano.8b06387. Epub 2018 Oct 17.
Nanoporous materials possess low thermal conductivities derived from effective phonon scatterings at grain boundaries and interfaces. Thus nanoporous thermoelectric materials have full potential to improve their thermoelectric performance. Here we report a high ZT of 1.7 ± 0.2 at 823 K in p-type nanoporous polycrystalline SnSe fabricated via a facile solvothermal route. We successfully induce indium selenides (InSe ) nanoprecipitates in the as-synthesized SnSe matrix of single-crystal microplates, and the nanopores are achieved via the decompositions of these nanoprecipitates during the sintering process. Through detailed structural and chemical characterizations, it is found that the extralow thermal conductivity of 0.24 W m K caused by the effective phonon blocking and scattering at induced nanopores, interfaces, and grain boundaries and the high power factor of 5.06 μW cm K are derived from a well-tuned hole carrier concentration of 1.34 × 10 cm via inducing high Sn vacancies by self-doping, contributing to high ZTs. This study fills the gap of achieving nanoporous SnSe and provides an avenue in achieving high-performance thermoelectric properties of materials.
纳米多孔材料具有低导热率,这源于晶界和界面处有效的声子散射。因此,纳米多孔热电材料具有充分的潜力来改善其热电性能。在此,我们报道了通过简便的溶剂热法制备的p型纳米多孔多晶SnSe在823 K时具有1.7±0.2的高ZT值。我们成功地在合成的单晶微板SnSe基体中诱导出硒化铟(InSe)纳米沉淀,并且在烧结过程中通过这些纳米沉淀的分解形成了纳米孔。通过详细的结构和化学表征发现,由诱导的纳米孔、界面和晶界处有效的声子阻塞和散射导致的0.24 W m⁻¹ K⁻¹的超低热导率以及5.06 μW cm⁻¹ K⁻²的高功率因子,源自通过自掺杂诱导高Sn空位而实现的1.34×10²⁰ cm⁻³的良好调谐空穴载流子浓度,这有助于实现高ZT值。这项研究填补了实现纳米多孔SnSe的空白,并为实现材料的高性能热电性能提供了一条途径。