Shi Xiaolei, Zheng Kun, Hong Min, Liu Weidi, Moshwan Raza, Wang Yuan, Qu Xianlin, Chen Zhi-Gang, Zou Jin
Materials Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia . Email:
Institute of Microstructure and Properties of Advanced Materials , Beijing University of Technology , Beijing 100022 , China.
Chem Sci. 2018 Jul 30;9(37):7376-7389. doi: 10.1039/c8sc02397b. eCollection 2018 Oct 7.
In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized a facile solvothermal route. The pellets sintered from these heavily Cu-doped microbelts show a high power factor of 5.57 μW cm K and low thermal conductivity of 0.32 W m K at 823 K, contributing to a high peak of ∼1.41. Through a combination of detailed structural and chemical characterizations, we found that with increasing the Cu doping level, the morphology of the synthesized Sn Cu Se ( is from 0 to 0.118) transfers from rectangular microplate to microbelt. The high electrical transport performance comes from the obtained Cu doped state, and the intensive crystal imperfections such as dislocations, lattice distortions, and strains, play key roles in keeping low thermal conductivity. This study fills in the gaps of the existing knowledge concerning the doping mechanisms of Cu in SnSe systems, and provides a new strategy to achieve high thermoelectric performance in SnSe-based thermoelectric materials.
在本研究中,我们首次报道了通过简便的溶剂热法合成的单晶SnSe微带中铜的溶解度高达11.8%。由这些重掺杂铜的微带烧结而成的颗粒在823 K时显示出5.57 μW cm⁻¹ K⁻²的高功率因子和0.32 W m⁻¹ K⁻¹的低热导率,促成了约1.41的高峰值ZT。通过详细的结构和化学表征相结合,我们发现随着铜掺杂水平的增加,合成的Sn₁₋ₓCuₓSe₁₋ₓ(x从0到0.118)的形态从矩形微板转变为微带。高电输运性能源于所获得的铜掺杂状态,而诸如位错、晶格畸变和应变等强烈的晶体缺陷在保持低热导率方面起关键作用。本研究填补了现有关于SnSe体系中铜掺杂机制知识的空白,并为在基于SnSe的热电材料中实现高热电性能提供了一种新策略。