Max-Planck-Institute for Biogeochemistry , Jena , Germany.
Finnish Meteorological Institute , Helsinki , Finland.
Environ Sci Technol. 2018 Dec 4;52(23):13811-13823. doi: 10.1021/acs.est.8b01435. Epub 2018 Nov 15.
Volatile organic compounds (VOC) play important roles in atmospheric chemistry, plant ecology, and physiology, and biogenic VOC (BVOC) emitted by plants is the largest VOC source. Our knowledge about how environmental drivers (e.g., carbon, light, and temperature) may regulate BVOC emissions is limited because they are often not controlled. We combined a greenhouse facility to manipulate atmospheric CO ([CO]) with proton-transfer-reaction mass spectrometry (PTR-MS) and cavity ring-down spectroscopy to investigate the regulation of BVOC in Norway spruce. Our results indicate a direct relationship between [CO] and methanol and acetone emissions, and their temperature and light dependencies, possibly related to substrate availability. The composition of monoterpenes stored in needles remained constant, but emissions of mono-(linalool) and sesquiterpenes (β-farnesene) increased at lower [CO], with the effects being most pronounced at the highest air temperature. Pulse-labeling suggested an immediate incorporation of recently assimilated carbon into acetone, mono- and sesquiterpene emissions even under 50 ppm [CO]. Our results provide new perspectives on CO, temperature and light effects on BVOC emissions, in particular how they depend on stored pools and recent photosynthetic products. Future studies using smaller but more seedlings may allow sufficient replication to examine the physiological mechanisms behind the BVOC responses.
挥发性有机化合物(VOC)在大气化学、植物生态学和生理学中起着重要作用,而植物产生的生物源 VOC(BVOC)是最大的 VOC 来源。由于环境驱动因素(如碳、光和温度)通常不受控制,我们对它们如何调节 BVOC 排放的了解有限。我们结合温室设施来操纵大气 CO([CO]),并用质子转移反应质谱(PTR-MS)和腔衰荡光谱法来研究挪威云杉中 BVOC 的调节。我们的结果表明,[CO]与甲醇和丙酮排放之间存在直接关系,以及它们对温度和光照的依赖性,这可能与基质的可用性有关。针叶中储存的单萜组成保持不变,但在较低的[CO]下,单萜(芳樟醇)和倍半萜(β-法呢烯)的排放增加,在最高空气温度下影响最为明显。脉冲标记表明,即使在 50 ppm [CO]下,最近同化的碳也会立即被掺入到丙酮、单萜和倍半萜的排放中。我们的结果提供了 CO、温度和光照对 BVOC 排放影响的新视角,特别是它们如何依赖于储存库和最近的光合作用产物。未来使用更小但更多幼苗的研究可能会允许足够的复制来研究 BVOC 响应背后的生理机制。