Suppr超能文献

利用英国临床实践研究数据库中的数据,开发和验证预测模型以估算原发性全髋关节和膝关节置换术风险:两项英国前瞻性开放队列研究。

Development and validation of prediction models to estimate risk of primary total hip and knee replacements using data from the UK: two prospective open cohorts using the UK Clinical Practice Research Datalink.

机构信息

Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele University, Keele, UK

Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele University, Keele, UK.

出版信息

Ann Rheum Dis. 2019 Jan;78(1):91-99. doi: 10.1136/annrheumdis-2018-213894. Epub 2018 Oct 18.

Abstract

OBJECTIVES

The ability to efficiently and accurately predict future risk of primary total hip and knee replacement (THR/TKR) in earlier stages of osteoarthritis (OA) has potentially important applications. We aimed to develop and validate two models to estimate an individual's risk of primary THR and TKR in patients newly presenting to primary care.

METHODS

We identified two cohorts of patients aged ≥40 years newly consulting hip pain/OA and knee pain/OA in the Clinical Practice Research Datalink. Candidate predictors were identified by systematic review, novel hypothesis-free 'Record-Wide Association Study' with replication, and panel consensus. Cox proportional hazards models accounting for competing risk of death were applied to derive risk algorithms for THR and TKR. Internal-external cross-validation (IECV) was then applied over geographical regions to validate two models.

RESULTS

45 predictors for THR and 53 for TKR were identified, reviewed and selected by the panel. 301 052 and 416 030 patients newly consulting between 1992 and 2015 were identified in the hip and knee cohorts, respectively (median follow-up 6 years). The resultant model C-statistics is 0.73 (0.72, 0.73) and 0.79 (0.78, 0.79) for THR (with 20 predictors) and TKR model (with 24 predictors), respectively. The IECV C-statistics ranged between 0.70-0.74 (THR model) and 0.76-0.82 (TKR model); the IECV calibration slope ranged between 0.93-1.07 (THR model) and 0.92-1.12 (TKR model).

CONCLUSIONS

Two prediction models with good discrimination and calibration that estimate individuals' risk of THR and TKR have been developed and validated in large-scale, nationally representative data, and are readily automated in electronic patient records.

摘要

目的

在骨关节炎(OA)早期阶段,高效、准确地预测初次全髋关节和膝关节置换(THR/TKR)的未来风险具有重要的潜在应用价值。我们旨在开发和验证两种模型,以评估初诊于初级保健的患者初次行 THR 和 TKR 的风险。

方法

我们在临床实践研究数据链接中识别了两个年龄≥40 岁的新出现髋关节疼痛/OA 和膝关节疼痛/OA 的患者队列。通过系统评价、新颖的无假设“记录广泛关联研究”(与复制相结合)和专家组共识确定候选预测因子。应用 Cox 比例风险模型来计算 THR 和 TKR 的风险算法。然后,在地理区域内应用内部-外部交叉验证(IECV)来验证两种模型。

结果

通过专家组审查和选择,确定了 301 052 名新出现髋关节疼痛/OA 的患者和 416 030 名新出现膝关节疼痛/OA 的患者(随访中位数为 6 年)。THR 模型(有 20 个预测因子)和 TKR 模型(有 24 个预测因子)的结果模型 C 统计量分别为 0.73(0.72,0.73)和 0.79(0.78,0.79)。IECV 的 C 统计量范围在 0.70-0.74(THR 模型)和 0.76-0.82(TKR 模型)之间;IECV 校准斜率范围在 0.93-1.07(THR 模型)和 0.92-1.12(TKR 模型)之间。

结论

我们在大规模、全国代表性的数据中开发并验证了两种具有良好区分度和校准度的预测模型,可用于评估个体行 THR 和 TKR 的风险,并且可以在电子病历中实现自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56a/6317440/99511fcb3d74/annrheumdis-2018-213894f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验