Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
Emory University and The Carter Center, One Copenhill, 453 Freedom Parkway, Atlanta, GA, 30307, USA.
Nat Commun. 2018 Oct 18;9(1):4324. doi: 10.1038/s41467-018-06657-5.
Stopping interventions is a critical decision for parasite elimination programmes. Quantifying the probability that elimination has occurred due to interventions can be facilitated by combining infection status information from parasitological surveys with extinction thresholds predicted by parasite transmission models. Here we demonstrate how the integrated use of these two pieces of information derived from infection monitoring data can be used to develop an analytic framework for guiding the making of defensible decisions to stop interventions. We present a computational tool to perform these probability calculations and demonstrate its practical utility for supporting intervention cessation decisions by applying the framework to infection data from programmes aiming to eliminate onchocerciasis and lymphatic filariasis in Uganda and Nigeria, respectively. We highlight a possible method for validating the results in the field, and discuss further refinements and extensions required to deploy this predictive tool for guiding decision making by programme managers.
停止干预是寄生虫消除计划的一个关键决策。通过将寄生虫学调查的感染状况信息与寄生虫传播模型预测的灭绝阈值相结合,可以方便地量化因干预而发生消除的概率。在这里,我们展示了如何综合利用这两个来自感染监测数据的信息片段,来开发一个分析框架,以便为停止干预措施做出有说服力的决策提供指导。我们提出了一种计算工具来进行这些概率计算,并通过将该框架应用于分别旨在在乌干达和尼日利亚消除盘尾丝虫病和淋巴丝虫病的规划的感染数据,展示了其在支持干预停止决策方面的实际效用。我们强调了一种在现场验证结果的可能方法,并讨论了为部署这个预测工具以指导规划人员做出决策而需要进一步细化和扩展的内容。