Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), and Instituto de Ciencia y Tecnología de los Alimentos, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Velez Sarsfield 1611, Córdoba, X5000HUA, Cordoba, Argentina.
Laboratory of Cardiovascular Science, National Institute on Aging, NIH. 251 Bayview Boulevard, Baltimore, 21224, MD, USA.
Sci Rep. 2018 Oct 18;8(1):15422. doi: 10.1038/s41598-018-33582-w.
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the "edge" between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the "edge" mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.
线粒体具有多种关键的细胞功能,包括能量生成、氧化还原平衡和凋亡细胞死亡的调节,因此对健康和疾病状态有重大影响。越来越多的人认识到,生物网络的稳定性/不稳定性可以在决定健康和疾病方面发挥关键作用。我们首次报告了线粒体混沌动力学,描述了导致该细胞器从稳定到混沌的条件。我们使用经过实验验证的线粒体功能计算模型,表明关键代谢变量的复杂振荡动力学出现在完全功能和病理行为之间的“边缘”,为混沌的出现奠定了基础。在这些条件下,轻微的、规则的正弦氧化还原胁迫会引发混沌动力学,其主要特征包括对初始条件的敏感性、正李雅普诺夫指数和奇异吸引子。在线粒体混沌的“边缘”,其对基质 Mn 超氧化物歧化酶的抗氧化能力以及氧化还原胁迫的幅度和频率极为敏感。这些结果不仅对决定健康维持和病理转化的线粒体信号具有潜在意义,包括异常的心脏节律。