Suppr超能文献

线粒体混沌动力学:稳定性边缘的氧化还原能量行为。

Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability.

机构信息

Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), and Instituto de Ciencia y Tecnología de los Alimentos, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Velez Sarsfield 1611, Córdoba, X5000HUA, Cordoba, Argentina.

Laboratory of Cardiovascular Science, National Institute on Aging, NIH. 251 Bayview Boulevard, Baltimore, 21224, MD, USA.

出版信息

Sci Rep. 2018 Oct 18;8(1):15422. doi: 10.1038/s41598-018-33582-w.

Abstract

Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the "edge" between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the "edge" mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.

摘要

线粒体具有多种关键的细胞功能,包括能量生成、氧化还原平衡和凋亡细胞死亡的调节,因此对健康和疾病状态有重大影响。越来越多的人认识到,生物网络的稳定性/不稳定性可以在决定健康和疾病方面发挥关键作用。我们首次报告了线粒体混沌动力学,描述了导致该细胞器从稳定到混沌的条件。我们使用经过实验验证的线粒体功能计算模型,表明关键代谢变量的复杂振荡动力学出现在完全功能和病理行为之间的“边缘”,为混沌的出现奠定了基础。在这些条件下,轻微的、规则的正弦氧化还原胁迫会引发混沌动力学,其主要特征包括对初始条件的敏感性、正李雅普诺夫指数和奇异吸引子。在线粒体混沌的“边缘”,其对基质 Mn 超氧化物歧化酶的抗氧化能力以及氧化还原胁迫的幅度和频率极为敏感。这些结果不仅对决定健康维持和病理转化的线粒体信号具有潜在意义,包括异常的心脏节律。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f77/6194025/c756bb68143a/41598_2018_33582_Fig1_HTML.jpg

相似文献

1
Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability.
Sci Rep. 2018 Oct 18;8(1):15422. doi: 10.1038/s41598-018-33582-w.
3
Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics?
Bioessays. 2013 Apr;35(4):314-22. doi: 10.1002/bies.201200125. Epub 2013 Jan 29.
4
Mitochondrial superoxide dismutase--signals of distinction.
Anticancer Agents Med Chem. 2011 Feb;11(2):181-90. doi: 10.2174/187152011795255920.
6
Mitochondrial generation of reactive oxygen species and its role in aerobic life.
Curr Med Chem. 2003 Dec;10(23):2495-505. doi: 10.2174/0929867033456477.
7
Melatonin-mitochondria interplay in health and disease.
Curr Top Med Chem. 2011;11(2):221-40. doi: 10.2174/156802611794863517.
8
Pas Kinase Deficiency Triggers Antioxidant Mechanisms in the Liver.
Sci Rep. 2018 Sep 14;8(1):13810. doi: 10.1038/s41598-018-32192-w.
9
Mitochondria: a hub of redox activities and cellular distress control.
Mol Cell Biochem. 2007 Nov;305(1-2):235-53. doi: 10.1007/s11010-007-9520-8. Epub 2007 Jun 12.

引用本文的文献

1
FateNet: an integration of dynamical systems and deep learning for cell fate prediction.
Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae525.
3
Fractal dynamics of individual mitochondrial oscillators measure local inter-mitochondrial coupling.
Biophys J. 2023 Apr 18;122(8):1459-1469. doi: 10.1016/j.bpj.2023.03.011. Epub 2023 Mar 10.
4
Universal dynamics of mitochondrial networks: a finite-size scaling analysis.
Sci Rep. 2022 Oct 12;12(1):17074. doi: 10.1038/s41598-022-14946-9.
5
Machine learning alternative to systems biology should not solely depend on data.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac436.
7
Computational Models on Pathological Redox Signalling Driven by Pregnancy: A Review.
Antioxidants (Basel). 2022 Mar 18;11(3):585. doi: 10.3390/antiox11030585.
8
Modeling Cell Energy Metabolism as Weighted Networks of Non-autonomous Oscillators.
Front Physiol. 2021 Jan 28;11:613183. doi: 10.3389/fphys.2020.613183. eCollection 2020.
9
Glioma cells are resistant to inflammation‑induced alterations of mitochondrial dynamics.
Int J Oncol. 2020 Dec;57(6):1293-1306. doi: 10.3892/ijo.2020.5134. Epub 2020 Oct 15.

本文引用的文献

2
Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence.
Redox Biol. 2017 Apr;11:482-501. doi: 10.1016/j.redox.2016.12.001. Epub 2016 Dec 7.
3
Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back.
Wiley Interdiscip Rev Syst Biol Med. 2017 Jan;9(1). doi: 10.1002/wsbm.1352. Epub 2016 Sep 7.
4
How mitochondrial dynamism orchestrates mitophagy.
Circ Res. 2015 May 22;116(11):1835-49. doi: 10.1161/CIRCRESAHA.116.306374.
5
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007.
6
Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes.
J Mol Cell Cardiol. 2015 Jan;78:90-9. doi: 10.1016/j.yjmcc.2014.09.024. Epub 2014 Sep 28.
8
Effects of regional mitochondrial depolarization on electrical propagation: implications for arrhythmogenesis.
Circ Arrhythm Electrophysiol. 2014 Feb;7(1):143-51. doi: 10.1161/CIRCEP.113.000600. Epub 2014 Jan 1.
9
Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.
Biochim Biophys Acta. 2014 Feb;1837(2):287-95. doi: 10.1016/j.bbabio.2013.11.007. Epub 2013 Nov 20.
10
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验