Suppr超能文献

氧化还原优化的ROS平衡以及线粒体呼吸与ROS之间的关系。

Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.

作者信息

Cortassa Sonia, O'Rourke Brian, Aon Miguel A

机构信息

Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Biochim Biophys Acta. 2014 Feb;1837(2):287-95. doi: 10.1016/j.bbabio.2013.11.007. Epub 2013 Nov 20.

Abstract

The Redox-Optimized ROS Balance [R-ORB] hypothesis postulates that the redox environment [RE] is the main intermediary between mitochondrial respiration and reactive oxygen species [ROS]. According to R-ORB, ROS emission levels will attain a minimum vs. RE when respiratory rate (VO2) reaches a maximum following ADP stimulation, a tenet that we test herein in isolated heart mitochondria under forward electron transport [FET]. ROS emission increased two-fold as a function of changes in the RE (~400 to ~900mV·mM) in state 4 respiration elicited by increasing glutamate/malate (G/M). In G/M energized mitochondria, ROS emission decreases two-fold for RE ~500 to ~300mV·mM in state 3 respiration at increasing ADP. Stressed mitochondria released higher ROS, that was only weakly dependent on RE under state 3. As a function of VO2, the ROS dependence on RE was strong between ~550 and ~350mV·mM, when VO2 is maximal, primarily due to changes in glutathione redox potential. A similar dependence was observed with stressed mitochondria, but over a significantly more oxidized RE and ~3-fold higher ROS emission overall, as compared with non-stressed controls. We conclude that under non-stressful conditions mitochondrial ROS efflux decreases when the RE becomes less reduced within a range in which VO2 is maximal. These results agree with the R-ORB postulate that mitochondria minimize ROS emission as they maximize VO2 and ATP synthesis. This relationship is altered quantitatively, but not qualitatively, by oxidative stress although stressed mitochondria exhibit diminished energetic performance and increased ROS release.

摘要

氧化还原优化的ROS平衡[R-ORB]假说假定氧化还原环境[RE]是线粒体呼吸与活性氧[ROS]之间的主要中介。根据R-ORB假说,当呼吸速率(VO2)在ADP刺激后达到最大值时,ROS释放水平相对于RE将达到最小值,这一原则我们在正向电子传递[FET]条件下的离体心脏线粒体中进行了验证。在由增加谷氨酸/苹果酸(G/M)引发的状态4呼吸中,ROS释放随着RE的变化(约400至约900mV·mM)增加了两倍。在G/M激发的线粒体中,在状态3呼吸中随着ADP增加,当RE从约500mV·mM降至约300mV·mM时,ROS释放减少两倍。应激线粒体释放更高的ROS,在状态3下其仅微弱依赖于RE。作为VO2的函数,当VO2最大时,ROS对RE的依赖性在约550至约350mV·mM之间很强,这主要是由于谷胱甘肽氧化还原电位的变化。在应激线粒体中也观察到类似的依赖性,但与非应激对照相比,整体上RE显著更氧化且ROS释放高约3倍。我们得出结论,在无应激条件下,当RE在VO2最大的范围内变得不那么还原时,线粒体ROS流出减少。这些结果与R-ORB假说一致,即线粒体在使VO2和ATP合成最大化时将ROS释放最小化。尽管应激线粒体表现出能量性能下降和ROS释放增加,但这种关系在数量上发生了改变,而在质量上没有改变。

相似文献

1
Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.
Biochim Biophys Acta. 2014 Feb;1837(2):287-95. doi: 10.1016/j.bbabio.2013.11.007. Epub 2013 Nov 20.
2
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.
3
Redox-optimized ROS balance: a unifying hypothesis.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.
4
Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study.
PLoS Comput Biol. 2017 Jun 9;13(6):e1005588. doi: 10.1371/journal.pcbi.1005588. eCollection 2017 Jun.
5
Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study.
J Gen Physiol. 2012 Jun;139(6):479-91. doi: 10.1085/jgp.201210772. Epub 2012 May 14.
6
Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1400-7. doi: 10.1152/ajpheart.00198.2007. Epub 2007 May 18.
8
Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
Am J Physiol Cell Physiol. 2014 Sep 15;307(6):C499-507. doi: 10.1152/ajpcell.00006.2014. Epub 2014 Jun 11.
9
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
10
Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.
Circ Res. 2008 Oct 10;103(8):873-80. doi: 10.1161/CIRCRESAHA.108.180869. Epub 2008 Sep 5.

引用本文的文献

1
Redox Imbalance in Inflammation: The Interplay of Oxidative and Reductive Stress.
Antioxidants (Basel). 2025 May 29;14(6):656. doi: 10.3390/antiox14060656.
2
Mechano-energetic uncoupling in heart failure.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01167-6.
3
Mitochondrial reactive oxygen species production in lungs of rats with different susceptibilities to hyperoxia-induced acute lung injury.
Biochim Biophys Acta Bioenerg. 2025 Jun 12;1866(4):149561. doi: 10.1016/j.bbabio.2025.149561.
5
Irisquinone's Anti-cancer Potential: Targeting TrxR to Trigger ROS-mediated Apoptosis and Pyroptosis.
Anticancer Agents Med Chem. 2025;25(9):620-629. doi: 10.2174/0118715206339230241202062826.
6
Effects of maternal exercise modes on infant cord blood proteome.
bioRxiv. 2024 Nov 14:2024.11.11.623083. doi: 10.1101/2024.11.11.623083.
8
BZD9L1 Differentially Regulates Sirtuins in Liver-Derived Cells by Inducing Reactive Oxygen Species.
Biomedicines. 2023 Nov 15;11(11):3059. doi: 10.3390/biomedicines11113059.
10

本文引用的文献

2
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.
3
Adaptive downregulation of mitochondrial function in down syndrome.
Cell Metab. 2013 Jan 8;17(1):132-40. doi: 10.1016/j.cmet.2012.12.005.
4
Mitochondria and cancer.
Nat Rev Cancer. 2012 Oct;12(10):685-98. doi: 10.1038/nrc3365.
6
Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study.
J Gen Physiol. 2012 Jun;139(6):479-91. doi: 10.1085/jgp.201210772. Epub 2012 May 14.
7
Linking mitochondrial bioenergetics to insulin resistance via redox biology.
Trends Endocrinol Metab. 2012 Mar;23(3):142-53. doi: 10.1016/j.tem.2011.12.008. Epub 2012 Feb 2.
8
Power surge: supporting cells "fuel" cancer cell mitochondria.
Cell Metab. 2012 Jan 4;15(1):4-5. doi: 10.1016/j.cmet.2011.12.011.
9
Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria.
J Biol Chem. 2011 Sep 23;286(38):33669-77. doi: 10.1074/jbc.M111.284612. Epub 2011 Aug 5.
10
Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach.
Biophys J. 2011 Jun 22;100(12):2894-903. doi: 10.1016/j.bpj.2011.05.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验