Kurz Felix T, Kembro Jackelyn M, Flesia Ana G, Armoundas Antonis A, Cortassa Sonia, Aon Miguel A, Lloyd David
Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA.
Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Wiley Interdiscip Rev Syst Biol Med. 2017 Jan;9(1). doi: 10.1002/wsbm.1352. Epub 2016 Sep 7.
Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O and CO levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.
多层次网络组织和非线性,我们回顾了一系列新颖且易于使用的技术,以在实验 - 计算协同的框架内探索和分析它们复杂的动态行为。结合具体的生物学实例,介绍、讨论了诸如小波分析、功率谱分析和代谢组学 - 通量组学分析等分析方法,并突出了它们的优缺点。还展示了来自稳态和非稳态生物变量及信号的时间序列,如膜电位、高通量代谢组学、氧气和二氧化碳水平、鸟类运动等,在分子、(亚)细胞、组织以及整个器官和动物水平上,如何揭示有关潜在生物网络特性的重要信息。受系统生物学启发的计算方法开始为解决代谢、细胞器和器官网络的综合功能动力学问题铺平道路。随着我们在正常或病理条件下揭示这些网络的控制和调节特性及其动态的能力不断增强,我们应对内源性节律和时钟以改善人类衰老过程中的健康寿命、管理复杂代谢紊乱、神经退行性疾病和癌症的能力也在不断提高。《WIREs 系统生物学与医学》2017 年,9:e1352。doi:10.1002/wsbm.1352 有关本文的更多资源,请访问《WIREs》网站。