Thompson Cort H, Khan Sahar A, Khan Wasif A, Li Wen, Purcell Erin K
Michigan State University, East Lansing, MI 48824 USA (
Michigan State University, East Lansing, MI 48824 USA.
Int IEEE EMBS Conf Neural Eng. 2017 May;2017:154-157. doi: 10.1109/NER.2017.8008315. Epub 2017 Aug 15.
With the advent of genetically-encoded optical tools to trigger or report neuronal activity, new designs for multielectrode arrays (MEAs) used in neural interfacing incorporate both optical and electrical modes of stimulating or recording neural activity. Likewise, the need to improve upon the biocompatibility of implanted MEAs has moved the field towards the use of softer, more compliant materials in device fabrication. However, there is limited available information on the impact of the materials used in MEAs on the function of interfaced individual neurons and neuronal networks. We assessed the responses of rat cortical neurons on optically transparent materials commonly used in the construction of "next-generation" devices: indium tin oxide (ITO), parylene-C, and polydimethylsiloxane (PDMS). We found that neuronal network formation and spiking responses to electrical stimulation were enhanced in neurons cultured on ITO. We observed reduced excitability and synaptic connectivity between neurons cultured on PDMS. We hypothesize that the superior conductivity of ITO and suboptimal neuronal attachment to PDMS contributed to our results.
随着用于触发或报告神经元活动的基因编码光学工具的出现,用于神经接口的多电极阵列(MEA)的新设计融合了刺激或记录神经活动的光学和电学模式。同样,提高植入式MEA生物相容性的需求推动该领域在设备制造中使用更柔软、更具顺应性的材料。然而,关于MEA中使用的材料对所连接的单个神经元和神经元网络功能影响的可用信息有限。我们评估了大鼠皮质神经元对常用于构建“下一代”设备的光学透明材料的反应:氧化铟锡(ITO)、聚对二甲苯-C和聚二甲基硅氧烷(PDMS)。我们发现,在ITO上培养的神经元中,神经网络的形成以及对电刺激的尖峰反应增强。我们观察到在PDMS上培养的神经元之间的兴奋性和突触连接性降低。我们推测,ITO的卓越导电性和神经元与PDMS的次优附着导致了我们的结果。