Suppr超能文献

估计网络荟萃分析中各项研究的贡献:路径、流量和源流

Estimating the contribution of studies in network meta-analysis: paths, flows and streams.

作者信息

Papakonstantinou Theodoros, Nikolakopoulou Adriani, Rücker Gerta, Chaimani Anna, Schwarzer Guido, Egger Matthias, Salanti Georgia

机构信息

Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.

Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.

出版信息

F1000Res. 2018 May 18;7:610. doi: 10.12688/f1000research.14770.3. eCollection 2018.

Abstract

In network meta-analysis, it is important to assess the influence of the limitations or other characteristics of individual studies on the estimates obtained from the network. The proportion contribution matrix, which shows how much each direct treatment effect contributes to each treatment effect estimate from network meta-analysis, is crucial in this context. We use ideas from graph theory to derive the proportion that is contributed by each direct treatment effect. We start with the 'projection' matrix in a two-step network meta-analysis model, called the matrix, which is analogous to the hat matrix in a linear regression model. We develop a method to translate entries to proportion contributions based on the observation that the rows of  can be interpreted as flow networks, where a stream is defined as the composition of a path and its associated flow. We present an algorithm that identifies the flow of evidence in each path and decomposes it into direct comparisons. To illustrate the methodology, we use two published networks of interventions. The first compares no treatment, quinolone antibiotics, non-quinolone antibiotics and antiseptics for underlying eardrum perforations and the second compares 14 antimanic drugs. We believe that this approach is a useful and novel addition to network meta-analysis methodology, which allows the consistent derivation of the proportion contributions of direct evidence from individual studies to network treatment effects.

摘要

在网络荟萃分析中,评估个体研究的局限性或其他特征对从网络中获得的估计值的影响非常重要。比例贡献矩阵显示了每个直接治疗效应在网络荟萃分析中对每个治疗效应估计值的贡献程度,在这种情况下至关重要。我们运用图论的思想来推导每个直接治疗效应的贡献比例。我们从两步网络荟萃分析模型中的“投影”矩阵(称为矩阵)开始,它类似于线性回归模型中的帽子矩阵。基于这样的观察,即矩阵的行可以解释为流网络,其中流被定义为路径及其相关流的组合,我们开发了一种将矩阵元素转换为比例贡献的方法。我们提出了一种算法,该算法可识别每条路径中的证据流并将其分解为直接比较。为了说明该方法,我们使用了两个已发表的干预措施网络。第一个比较了针对潜在鼓膜穿孔的不治疗、喹诺酮类抗生素、非喹诺酮类抗生素和防腐剂,第二个比较了14种抗躁狂药物。我们认为这种方法是网络荟萃分析方法中一种有用且新颖的补充,它允许一致地推导个体研究的直接证据对网络治疗效应的比例贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验