Alagappan Gandhi, Png Ching Eng
Agency for Science, Technology, and Research (A-STAR), Institute of High-Performance Computing, Fusionopolis, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.
Nanophotonics. 2023 Mar 3;12(7):1255-1269. doi: 10.1515/nanoph-2022-0715. eCollection 2023 Apr.
This article applies deep learning-accelerated inverse design algorithms and discovers a spectrum of photonic power dividers with exceptional performance metrics despite the simplicity in the design geometry. The deep learning models exhibit high precisions on the order of 10 to 10 for both TE and TM polarizations of light. These models enable ultrafast search for an empirically describable subspace that simultaneously satisfy compact footprints, ultralow losses, ultrawide bandwidth, and exceptional robustness against fabrication randomness. We demonstrate a spectrum of devices for silicon photonics with programmable power splitting ratios, excess losses as small as 0.14 dB, to the best of our knowledge, the smallest footprints on the scale of sub- , and low loss bandwidths covering the whole telecommunication spectrum of O, S, E, C, L and U-bands. The robustness of the devices is statistically checked against the fabrication randomness and are numerically verified using the full three-dimensional finite difference time domain calculation.
本文应用深度学习加速的逆向设计算法,发现了一系列光子功率分配器,尽管其设计几何结构简单,但却具有卓越的性能指标。深度学习模型在光的TE和TM偏振方面均表现出高达10到10的高精度。这些模型能够实现超快速搜索,以找到一个经验上可描述的子空间,该子空间同时满足紧凑的尺寸、超低损耗、超宽带宽以及对制造随机性的卓越鲁棒性。我们展示了一系列用于硅光子学的器件,其具有可编程的功率分配比,据我们所知,过量损耗低至0.14 dB,在亚微米尺度上具有最小的尺寸,并且低损耗带宽覆盖了整个O、S、E、C、L和U波段的电信频谱。针对制造随机性对器件的鲁棒性进行了统计检查,并使用全三维有限差分时域计算进行了数值验证。