Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland; The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Metab Eng. 2023 May;77:32-40. doi: 10.1016/j.ymben.2023.03.001. Epub 2023 Mar 11.
In biotechnological protein production processes, the onset of protein unfolding at high gene expression levels leads to diminishing production yields and reduced efficiency. Here we show that in silico closed-loop optogenetic feedback control of the unfolded protein response (UPR) in S. cerevisiae clamps gene expression rates at intermediate near-optimal values, leading to significantly improved product titers. Specifically, in a fully-automated custom-built 1L-photobioreactor, we used a cybergenetic control system to steer the level of UPR in yeast to a desired set-point by optogenetically modulating the expression of α-amylase, a hard-to-fold protein, based on real-time feedback measurements of the UPR, resulting in 60% higher product titers. This proof-of-concept study paves the way for advanced optimal biotechnology production strategies that diverge from and complement current strategies employing constitutive overexpression or genetically hardwired circuits.
在生物技术的蛋白质生产过程中,高基因表达水平下蛋白质的展开会导致产量下降和效率降低。在这里,我们表明,在酿酒酵母中,通过计算闭环光遗传学反馈控制未折叠蛋白反应(UPR),可以将基因表达率固定在中间的近最佳值,从而显著提高产物滴度。具体来说,在一个完全自动化的定制 1L 光生物反应器中,我们使用一个基于实时反馈测量 UPR 的 cybergenetic 控制系统,通过光遗传学调节α-淀粉酶(一种难以折叠的蛋白质)的表达来控制酵母中 UPR 的水平,达到所需的设定点,从而使产物滴度提高了 60%。这项概念验证研究为先进的优化生物技术生产策略铺平了道路,这些策略与当前使用组成型过表达或遗传硬连线电路的策略不同,也互为补充。